Binary Data Transmission

• Data transmission for \(n \)-bit data words
 › Parallel
 • all bits at once
 • 1 time step to get all data
 › Serial
 • one bit at a time
 • \(n \) time steps to get all data
 › Serial-parallel
 • both serial & parallel components
 • \(m \) time steps to get all \(n \) bits, \(k \) bits at a time
 › Trade-off:
 • \# inputs/outputs (I/O)
 • speed of data transmission
 • Combinational logic has parallel input data and output data
What is Combinational Logic?

• A collection of logic gates in which there are **NO** feedback loops
 › No feedback loops means there is no path in the circuit on which you will pass through a given gate more than once
 › Also defined as a circuit that can be represented by a directed acyclic graph (no cycles in the graph)
 • Gates represented by *vertices* (aka *nodes*)
 • Connections represented by *edges*
Boolean (Logic) Equations

- Any n-input, m-output combinational logic circuit can be completely described by a set of m logic equations
 - One logic equation for each output
 - Gives the output responses to all 2^n possible combinations of input values

\[
\begin{align*}
O_1 &= f_1(I_1, I_2, \ldots, I_n) \\
O_2 &= f_2(I_1, I_2, \ldots, I_n) \\
& \quad \vdots \\
O_m &= f_m(I_1, I_2, \ldots, I_n)
\end{align*}
\]
Truth Tables

• Any n-input, m-output combinational logic circuit can be completely described by a truth table
 › Gives the output responses to all 2^n possible combinations of input values
 › Therefore, truth tables and logic equations contain the same information

• Two logic equations (or two combinational logic circuits) are *equivalent* if they produce the same truth tables

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>00...00</td>
<td>$v_1...v_m$</td>
</tr>
<tr>
<td>00...01</td>
<td>$v_1...v_m$</td>
</tr>
<tr>
<td>00...10</td>
<td>$v_1...v_m$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>11...11</td>
<td>$v_1...v_m$</td>
</tr>
</tbody>
</table>
Representations of Logic Functions

- Truth Table
- Boolean (or logic) equations
- Sum-of-Products (SOP)
 - \(Z = A \overline{B} + A'C \)
 - AND is product
 - OR is sum
- SOP canonical form
 - \(Z = A'B'C + A'BC + ABC' + ABC \)
 - All literals are present in all product terms
- Minterm (a 1 in a TT row)
 - \(Z = \Sigma_{A,B,C}(1,3,6,7) \)

Literal – a single variable or the complement of a variable

Product term – a single literal or a logic product of multiple literals

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Z</th>
<th>Row value</th>
<th>Minterm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A’B’C’</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>A’B’C</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>A’BC’</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>A’BC</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>AB’C’</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>AB’C</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>ABC’</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>ABC</td>
</tr>
</tbody>
</table>
Other Representations

• Product-of-Sums (POS)
 \[Z = (A+C) \cdot (A'+B) \]

• POS canonical form
 \[Z = (A+B+C) \cdot (A+B'+C) \cdot (A'+B+C) \cdot (A'+B+C') \]
 All literals are present in all sum terms

• Maxterm (a 0 in a TT row)
 \[Z = \Pi_{A,B,C}(0,2,4,5) \]
 - Note this is all TT rows not in minterm expression for this example

• POS representations are less often used than SOP

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Z</th>
<th>Row value</th>
<th>Maxterm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A+B+C</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>A+B+C'</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>A+B'+C</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>A+B'+C'</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>A'+B+C</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>A'+B+C'</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>A'+B'+C</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>A'+B'+C'</td>
</tr>
</tbody>
</table>

Sum term – a single literal or a logic sum of multiple literals
Conversion Between Representations

- minterm
- canonical SOP
- canonical POS
- SOP
- POS
- Truth Table
- maxterm
- non-SOP
- non-POS
- P&Ts = Boolean Postulates & Theorems

Easy
Harder
Conversion Between Representations

• Minterm to truth table
 › convert decimal minterm to binary
 \[Z = \Sigma_{A,B,C}(1,3,6,7) \]
 \[= \Sigma_{A,B,C}(001,011,110,111) \]
 › place 1s in truth table entry for each minterm
 • Pay attention to input ordering
 › place 0s in all other entries

• Maxterm to truth table
 › convert decimal maxterm to binary
 \[Z = \Pi_{A,B,C}(0,2,4,5) \]
 \[= \Pi_{A,B,C}(000,010,100,101) \]
 › place 0s in truth table entry for each maxterm
 • Pay attention to input ordering
 › place 1s in all other entries
Conversion Between Representations

- **Minterm to canonical SOP**
 - convert decimal minterm to binary
 \[Z = \Sigma_{A,B,C}(1,3,6,7) \]
 \[= \Sigma_{A,B,C}(001,011,110,111) \]
 - replace 1s and 0s with variable and complement of variable, respectively
 \[= \Sigma_{A,B,C}(A'B'C,A'BC,ABC',ABC) \]
 - Be sure to maintain input ordering
 - then sum
 \[= A'B'C+A'BC+ABC'+ABC \]

- **Canonical SOP to minterm**
 - just reverse the procedure above
Conversion Between Representations

• Maxterm to canonical POS
 › convert decimal maxterm to binary
 \[Z = \Pi_{A,B,C}(0,2,4,5) \]
 \[= \Pi_{A,B,C}(000,010,100,101) \]
 › replace 0s and 1s with variable and complement of variable, respectively, and sum
 \[= \Pi_{A,B,C}(A+B+C, A+B'+C, A'+B+C, A'+B+C') \]
 • Be sure to maintain input ordering
 › then take the product of the individual sum terms
 \[= (A+B+C)\cdot(A+B'+C)\cdot(A'+B+C)\cdot(A'+B+C') \]
 Note that these last 2 steps are the dual of those for minterm to canonical SOP

• Canonical POS to maxterm
 › just reverse the procedure above
Conversion Between Representations

• POS to SOP

 › multiply like in regular algebra then apply P&Ts

\[
Z = (A+C)\cdot(A'+B)
\]

\[
= A\cdot(A'+B)+C\cdot(A'+B)
\]

using P5b

\[
= AA'+AB+CA'+CB
\]

using P5b (SOP but not minimal)

\[
= 0+AB+A'C+CB
\]

using P6b

\[
= AB+A'C+CB
\]

using P2a

\[
= AB+A'C
\]

using T9a

• Canonical POS to SOP

 › use same procedure
Conversion Between Representations

• SOP to canonical SOP
 › Replace all missing variables in each product term with $X+X'$, where X is the missing variable
 • Recall:
 - $X+X' = 1$, and
 - $Y\cdot1 = Y$, so we don’t change the product term
 \[
 Z = AB + A'C
 \]
 \[
 = A\cdot B\cdot 1 + A'\cdot 1\cdot C \quad \text{using P2b}
 \]
 \[
 = A\cdot B\cdot (C+C') + A'\cdot (B+B')\cdot C \quad \text{using P6a}
 \]
 › then multiply
 \[
 = ABC + ABC' + A'BC + A'B'C \quad \text{using P5b}
 \]
 \[
 = A'B'C + A'BC + ABC' + ABC \quad \text{using P3a}
 \]
Conversion Between Representations

• Canonical SOP to minimal SOP
 › apply P&Ts

\[Z = A'B'C + A'BC + ABC' + ABC \]

\[= A' \cdot (B'C + BC) + A \cdot (BC' + BC) \quad \text{using P5b} \]
\[= A' \cdot (C) + A \cdot (BC' + BC) \quad \text{using T6a} \]
\[= A' \cdot (C) + A \cdot (B) \quad \text{using T6a} \]
\[= A'C + AB \quad \text{no change, just removed () and •} \]
\[= AB + A'C \quad \text{using P3a} \]

• Same for SOP to minimal SOP

• **Problem:** How to know when it’s minimal?
Conversion Between Representations

- Non-SOP/non-POS to SOP

 - apply P&Ts

\[
Z = (((A'B')'C')'+D')' = ((A•B)•C)+\overline{D}
\]

\[
= ((A•B)•C)•\overline{D}
\]

using DeMorgan T8a

\[
= ((\overline{A•B})•C)•D
\]

using T3

\[
= ((\overline{A+B})•C)•D
\]

using DeMorgan T8b

\[
= ((A+B')•C)•D
\]

using T3

\[
= (A+B')•C•D
\]

no change, just removed ()

\[
= ACD+B'CD
\]

(SOP) using P5b

Note: this is a POS
Conversion Between Representations

• SOP to truth table:
 › Place a logic 1 in each truth table output entry whose input value satisfies a given product term = 1
 • A \(k \)-variable product term will produce \(2^{n-k} \) 1s in the truth table where \(n \) is the total number of input variables
 › Repeat for all product terms

• POS to truth table:
 › Place a logic 0 in each truth table output entry whose input value satisfies a given sum term = 0
 • A \(k \)-variable sum term will produce \(2^{n-k} \) 0s in the truth table where \(n \) is the total number of input variables
 › Repeat for all sum terms
Using Truth Tables to Prove Theorems

- Consensus Theorem
 - T9a: \(X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z \)
 - T9b: \((X+Y) \cdot (X'+Z) \cdot (Y+Z) = (X+Y) \cdot (X'+Z) \)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>