
12-1

12.1  �Introduction

The Levenberg–Marquardt algorithm [L44,M63], which was independently developed by Kenneth
Levenberg and Donald Marquardt, provides a numerical solution to the problem of minimizing a non-
linear function. It is fast and has stable convergence. In the artificial neural-networks field, this algo-
rithm is suitable for training small- and medium-sized problems.

Many other methods have already been developed for neural-networks training. The steep-
est descent algorithm, also known as the error backpropagation (EBP) algorithm [EHW86,J88],
dispersed the dark clouds on the field of artificial neural networks and could be regarded as one
of the most significant breakthroughs for training neural networks. Many improvements have
been made to EBP [WT93,AW95,W96,WCM99], but these improvements are relatively minor
[W02,WHM03,YW09,W09,WY10]. The EBP algorithm is still widely used today; however, it is also
known as an inefficient algorithm because of its slow convergence. There are two main reasons for the
slow convergence: the first reason is that its step sizes should be adequate to the gradients (Figure 12.1).
Logically, small step sizes should be taken where the gradient is steep so as not to rattle out of the required
minima (because of oscillation). So, if the step size is a constant, it needs to be chosen small. Then, in the
place where the gradient is gentle, the training process would be very slow. The second reason is that the
curvature of the error surface may not be the same in all directions, such as the Rosenbrock function, so
the classic “error valley” problem [O92] may exist and may result in the slow convergence.

The slow convergence of the steepest descent method can be greatly improved by the Gauss–Newton
algorithm [O92]. Using second-order derivatives of error function to “naturally” evaluate the curvature
of error surface, The Gauss–Newton algorithm can find proper step sizes for each direction and con-
verge very fast; especially, if the error function has a quadratic surface, it can converge directly in the
first iteration. But this improvement only happens when the quadratic approximation of error function
is reasonable. Otherwise, the Gauss–Newton algorithm would be mostly divergent.

12
Levenberg–Marquardt

Training

12.1	 Introduction... 12-1
12.2	 Algorithm Derivation... 12-2

Steepest Descent Algorithm  •  Newton’s Method  •  Gauss–Newton
Algorithm  •  Levenberg–Marquardt Algorithm

12.3	 Algorithm Implementation..12-8
Calculation of Jacobian Matrix  •  Training Process Design

12.4	 Comparison of Algorithms.. 12-13
12.5	 Summary... 12-15
References... 12-15

Hao Yu
Auburn University

Bogdan M.
Wilamowski
Auburn University

K10149_C012.indd 1 9/3/2010 2:21:46 PM

12-2	 Intelligent Systems

The Levenberg–Marquardt algorithm blends the steepest descent method and the Gauss–Newton
algorithm. Fortunately, it inherits the speed advantage of the Gauss–Newton algorithm and the stability
of the steepest descent method. It’s more robust than the Gauss–Newton algorithm, because in many
cases it can converge well even if the error surface is much more complex than the quadratic situation.
Although the Levenberg–Marquardt algorithm tends to be a bit slower than Gauss–Newton algorithm
(in convergent situation), it converges much faster than the steepest descent method.

The basic idea of the Levenberg–Marquardt algorithm is that it performs a combined training process:
around the area with complex curvature, the Levenberg–Marquardt algorithm switches to the steepest
descent algorithm, until the local curvature is proper to make a quadratic approximation; then it approx-
imately becomes the Gauss–Newton algorithm, which can speed up the convergence significantly.

12.2  �Algorithm Derivation

In this part, the derivation of the Levenberg–Marquardt algorithm will be presented in four parts:
(1) steepest descent algorithm, (2) Newton’s method, (3) Gauss–Newton’s algorithm, and (4) Levenberg–
Marquardt algorithm.

Before the derivation, let us introduce some commonly used indices:

•	 p is the index of patterns, from 1 to P, where P is the number of patterns.
•	 m is the index of outputs, from 1 to M, where M is the number of outputs.
•	 i and j are the indices of weights, from 1 to N, where N is the number of weights.
•	 k is the index of iterations.

Other indices will be explained in related places.
Sum square error (SSE) is defined to evaluate the training process. For all training patterns and net-

work outputs, it is calculated by

	 E
m

M

p

P

x w e,
11

() =
==

∑∑12 2
p m, 	 (12.1)

where
x is the input vector
w is the weight vector
ep,m is the training error at output m when applying pattern p and it is defined as

	 e d op m p m p m, , ,= − 	 (12.2)

where
d is the desired output vector
o is the actual output vector

EBP algorithm with
small constant step

size

EBP algorithm with
large constant step

size

Figure 12.1  Searching process of the steepest descent method with different learning constants: yellow trajec-
tory is for small learning constant that leads to slow convergence; purple trajectory is for large learning constant
that causes oscillation (divergence).

AQ1

K10149_C012.indd 2 9/3/2010 2:21:52 PM

Levenberg–Marquardt Training	 12-3

12.2.1  �Steepest Descent Algorithm

The steepest descent algorithm is a first-order algorithm. It uses the first-order derivative of total error
function to find the minima in error space. Normally, gradient g is defined as the first-order derivative
of total error function (12.1):

	 g x w
w

= ∂
∂

= ∂
∂

∂
∂

∂
∂









E E
w

E
w

E
wN

T
(,)

1 2
� 	 (12.3)

With the definition of gradient g in (12.3), the update rule of the steepest descent algorithm could be
written as

	 w wk k+ = −1 αgk 	 (12.4)

where α is the learning constant (step size).
The training process of the steepest descent algorithm is asymptotic convergence. Around the solu-

tion, all the elements of gradient vector would be very small and there would be a very tiny weight
change.

12.2.2  �Newton’s Method

Newton’s method assumes that all the gradient components g1, g2, …, gN are functions of weights and all
weights are linearly independent:

	

g F w w w
g F w w w

g F w w w

N

N

N N N

1 1 1 2

2 2 1 2

1 2

= ()
= ()

= ()











,
,

,

�

�

�

�

	 (12.5)

where F1,F2, …, FN are nonlinear relationships between weights and related gradient components.
Unfold each gi (i = 1, 2,…, N) in Equations 12.5 by Taylor series and take the first-order approximation:

	

g g g
w

w g
w

w g
w

w

g g g
w

w

N
N1 1 0

1

1
1

1

2
2

1

2 2 0
2

1
1

≈ + ∂
∂

+ ∂
∂

+ + ∂
∂

≈ + ∂
∂

+ ∂

,

,

∆ ∆ ∆

∆

�

gg
w

w g
w

w

g g g
w

w g
w

w g
w

N
N

N N
N N N

N

2

2
2

2

0
1

1
2

2

∂
+ + ∂

∂

≈ + ∂
∂

+ ∂
∂

+ + ∂
∂

∆ ∆

∆ ∆

�

�

�, ∆∆wN
















	 (12.6)

By combining the definition of gradient vector g in (12.3), it could be determined that

	 ∂
∂

=
∂ ∂

∂







∂
= ∂

∂ ∂
g
w

E
w
w

E
w w

i

j

j

j i j

2 	 (12.7)

AQ2

K10149_C012.indd 3 9/3/2010 2:22:04 PM

12-4	 Intelligent Systems

By inserting Equation 12.7 to 12.6:

	

g g E
w

w E
w w

w E
w w

w

g g E
N

N1 1 0

2

1
2 1

2

1 2
2

2

1

2 2 0

2

≈ + ∂
∂

+ ∂
∂ ∂

+ + ∂
∂ ∂

≈ + ∂
∂

,

,

∆ ∆ ∆�

ww w
w E

w
w E

w w
w

g g E
w w

w

N
N

N N
N

2 1
1

2

2
2 2

2

2

0

2

1
1

∂
+ ∂

∂
+ + ∂

∂ ∂

≈ + ∂
∂ ∂

+ ∂

∆ ∆ ∆

∆

�

�

,

22

2
2

2

2
E

w w
w E

w
w

N N
N∂ ∂

+ + ∂
∂















 ∆ ∆�

	 (12.8)

Comparing with the steepest descent method, the second-order derivatives of the total error function
need to be calculated for each component of gradient vector.

In order to get the minima of total error function E, each element of the gradient vector should be
zero. Therefore, left sides of the Equations 12.8 are all zero, then

	

0

0

1 0

2

1
2 1

2

1 2
2

2

1

2 0

2

2

≈ + ∂
∂

+ ∂
∂ ∂

+ + ∂
∂ ∂

≈ + ∂
∂

g E
w

w E
w w

w E
w w

w

g E
w

N
N,

,

∆ ∆ ∆�

∂∂
+ ∂

∂
+ + ∂

∂ ∂

≈ + ∂
∂ ∂

+ ∂
∂

w
w E

w
w E

w w
w

g E
w w

w E

N
N

N
N

1
1

2

2
2 2

2

2

0

2

1
1

2

0

∆ ∆ ∆

∆

�

�

, ww w
w E

w
w

N N
N∂

+ + ∂
∂

















2
2

2

2∆ ∆�

	 (12.9)

By combining Equation 12.3 with 12.9

	

− ∂
∂

= − ≈ ∂
∂

+ ∂
∂ ∂

+ + ∂
∂ ∂

− ∂
∂

=

E
w

g E
w

w E
w w

w E
w w

w

E
w

N
N

1
1 0

2

1
2 1

2

1 2
2

2

1

2

, ∆ ∆ ∆�

−− ≈ ∂
∂ ∂

+ ∂
∂

+ + ∂
∂ ∂

− ∂
∂

= −

g E
w w

w E
w

w E
w w

w

E
w

g

N
N

N
N

2 0

2

2 1
1

2

2
2 2

2

2

0

,

,

∆ ∆ ∆�

�

≈≈ ∂
∂ ∂

+ ∂
∂ ∂

+ + ∂
∂

















2

1
1

2

2
2

2

2
E

w w
w E

w w
w E

w
w

N N N
N∆ ∆ ∆�

	 (12.10)

There are N equations for N parameters so that all Δwi can be calculated. With the solutions, the weight
space can be updated iteratively.

Equations 12.10 can be also written in matrix form

	

−
−

−



















=

− ∂
∂

− ∂
∂

− ∂
∂























g
g

g

E
w
E
w

E
w

N

N

1

2

1

2�
� 





=

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂

∂
∂ ∂

2

1
2

2

1 2

2

1
2

2 1

2

2
2

2

2

E
w

E
w w

E
w w

E
w w

E
w

E
w w

N

N

�

�

�� � � �

�
∂

∂ ∂
∂

∂ ∂
∂
∂





























×

2

1

2

2

2

2

1

E
w w

E
w w

E
w

w

N N N

∆
∆ww

wN

2

�

∆





















	 (12.11)

AQ3

K10149_C012.indd 4 9/3/2010 2:22:12 PM

Levenberg–Marquardt Training	 12-5

where the square matrix is Hessian matrix:

	 H =

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂

∂
∂ ∂

2

1
2

2

1 2

2

1
2

2 1

2

2
2

2

2

E
w

E
w w

E
w w

E
w w

E
w

E
w w

N

N

�

�

� � � �

∂∂
∂ ∂

∂
∂ ∂

∂
∂





























2

1

2

2

2

2
E

w w
E

w w
E

wN N N
�

	 (12.12)

By combining Equations 12.3 and 12.12 with Equation 12.11

	 − =g H w∆ 	 (12.13)

So

	 ∆w H g= − −1 	 (12.14)

Therefore, the update rule for Newton’s method is

	 w w H gk k k k+
−= −1

1 	 (12.15)

As the second-order derivatives of total error function, Hessian matrix H gives the proper evaluation
on the change of gradient vector. By comparing Equations 12.4 and 12.15, one may notice that well-
matched step sizes are given by the inverted Hessian matrix.

12.2.3  �Gauss–Newton Algorithm

If Newton’s method is applied for weight updating, in order to get Hessian matrix H, the second-order
derivatives of total error function have to be calculated and it could be very complicated. In order to
simplify the calculating process, Jacobian matrix J is introduced as

	 J =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂

e
w

e
w

e
w

e
w

e
w

e
w

e

N

N

1 1

1

1 1

2

1 1

1 2

1

1 2

2

1 2

, , ,

, , ,

�

�

� � � �

11

1

1

2

1

1

1

1

2

1

2

, , ,

, , ,

,

M M M

N

P P P

N

P

w
e
w

e
w

e
w

e
w

e
w

e

∂
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂

�

� � � �

�

∂∂
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂












w
e
w

e
w

e
w

e
w

e
w

P P

N

P M P M P M

N

1

2

2

2

1 2

, ,

, , ,

�

� � � �

�









































	 (12.16)

K10149_C012.indd 5 9/3/2010 2:22:24 PM

12-6	 Intelligent Systems

By integrating Equations 12.1 and 12.3, the elements of gradient vector can be calculated as

	 g E
w

e

w
e
w

ei
i

p m
P

i

p m

i
p m

m

= ∂
∂

=
∂





∂
=

∂
∂







==

=

∑∑12 2

1

,
,

,
m 1

M

p 1
MM

p

P

∑∑
=1

	 (12.17)

Combining Equations 12.16 and 12.17, the relationship between Jacobian matrix J and gradient vector
g would be

	 g Je= 	 (12.18)

where error vector e has the form

	 e =




































e
e

e

e
e

e

M

P

P

P M

1 1

1 2

1

1

2

,

,

,

,

,

,

�

�

�



	 (12.19)

Inserting Equation 12.1 into 12.12, the element at ith row and jth column of Hessian matrix can be
calculated as

	 h E
w w

e

w w
e
w

e
i j

i j

p m
P

i j

p m

i

p
,

,
,= ∂

∂ ∂
=

∂ 





∂ ∂
=

∂
∂

∂== ∑∑2
2 21

2 m 1

M

p 1 ,,
,

m

jm

M

p

P

i jw
S

∂
+

==
∑∑

11

	 (12.20)

where Si,j is equal to

	 S
e

w w
ei j

p m

i j
p m

m

M

p

P

,
,

,=
∂

∂ ∂
==

∑∑
2

11

	 (12.21)

As the basic assumption of Newton’s method is that Si,j is closed to zero [TM94], the relationship between
Hessian matrix H and Jacobian matrix J can be rewritten as

	 H J J≈ T 	 (12.22)

By combining Equations 12.15, 12.18, and 12.22, the update rule of the Gauss–Newton algorithm is
presented as

	 w w J J J ek k k
T

k k k+
−

= − ()1
1

	 (12.23)

K10149_C012.indd 6 9/3/2010 2:22:39 PM

Levenberg–Marquardt Training	 12-7

Obviously, the advantage of the Gauss–Newton algorithm over the standard Newton’s method
(Equation 12.15) is that the former does not require the calculation of second-order derivatives of the
total error function, by introducing Jacobian matrix J instead. However, the Gauss–Newton algorithm
still faces the same convergent problem like the Newton algorithm for complex error space optimiza-
tion. Mathematically, the problem can be interpreted as the matrix JTJ may not be invertible.

12.2.4  �Levenberg–Marquardt Algorithm

In order to make sure that the approximated Hessian matrix JTJ is invertible, Levenberg–Marquardt
algorithm introduces another approximation to Hessian matrix:

	 H J J I≈ +T µ 	 (12.24)

where
μ is always positive, called combination coefficient
I is the identity matrix

From Equation 12.24, one may notice that the elements on the main diagonal of the approximated
Hessian matrix will be larger than zero. Therefore, with this approximation (Equation 12.24), it can be
sure that matrix H is always invertible.

By combining Equations 12.23 and 12.24, the update rule of Levenberg–Marquardt algorithm can be
presented as

	 w w J J I J ek k k
T

k k k+
−

= − +()1
1

µ 	 (12.25)

As the combination of the steepest descent algorithm and the Gauss–Newton algorithm, the Levenberg–
Marquardt algorithm switches between the two algorithms during the training process. When the com-
bination coefficient μ is very small (nearly zero), Equation 12.25 is approaching to Equation 12.23 and
Gauss–Newton algorithm is used. When combination coefficient μ is very large, Equation 12.25 approx-
imates to Equation 12.4 and the steepest descent method is used.

If the combination coefficient μ in Equation 12.25 is very big, it can be interpreted as the learning
coefficient in the steepest descent method (12.4):

	 α
µ

= 1 	 (12.26)

Table 12.1 summarizes the update rules for various algorithms.

Table 12.1  Specifications of Different Algorithms

Algorithms Update Rules Convergence Computation Complexity

EBP algorithm wk+1 = wk − αgk Stable, slow Gradient
Newton algorithm w wk k k k+

−= −1
1H g Unstable, fast Gradient and Hessian

Gauss–Newton algorithm w w ek k k
T

k k k+
−

= − ()1
1

J J J Unstable, fast Jacobian

Levenberg–Marquardt algorithm w w J J I J ek k k
T

k k k+

−
= − +()1

1
µ Stable, fast Jacobian

NBN algorithm [08WC]a w wk k k k+
−= −1

1Q g Stable, fast Quasi Hessiana

a	Reference Chapter 12.

K10149_C012.indd 7 9/3/2010 2:22:58 PM

12-8	 Intelligent Systems

12.3  �Algorithm Implementation

In order to implement the Levenberg–Marquardt algorithm for neural network training, two problems
have to be solved: how does one calculate the Jacobian matrix, and how does one organize the training
process iteratively for weight updating.

In this section, the implementation of training with the Levenberg–Marquardt algorithm will be
introduced in two parts: (1) calculation of Jacobian matrix; (2) training process design.

12.3.1  �Calculation of Jacobian Matrix

Different from Section 12.2, in the computation followed, j and k are used as the indices of neurons,
from 1 to nn, where nn is the number of neurons contained in a topology; i is the index of neuron inputs,
from 1 to ni, where ni is the number of inputs and it may vary for different neurons.

As an introduction of basic concepts of neural network training, let us consider a neuron j with ni
inputs, as shown in Figure 12.2. If neuron j is in the first layer, all its inputs would be connected to
the inputs of the network, otherwise, its inputs can be connected to outputs of other neurons or to net-
works inputs if connections across layers are allowed.

Node y is an important and flexible concept. It can be yj,i, meaning the ith input of neuron j. It also
can be used as yj to define the output of neuron j. In the following derivation, if node y has one index
then it is used as a neuron output node, but if it has two indices (neuron and input), it is a neuron
input node.
The output node of neuron j is calculated using

	 y f netj j j= () 	 (12.27)

where fj is the activation function of neuron j and net value netj is the sum of weighted input nodes of
neuron j:

	 net w yj j i j i
i

ni

= +
=

∑ , ,

1

wj,0 	 (12.28)

where
yj,i is the ith input node of neuron j, weighted by wj,i

wj,0 is the bias weight of neuron j

AQ4

fj(netj) Fm,j (yj)
om

wj,1

yj
wj,2

wj,i

+1

yj,1

yj,2

yj,i

yj,ni–1

wj,ni–1

yj,ni

wj,ni

wj,0

…

…

Figure 12.2  Connection of a neuron j with the rest of the network. Nodes yj,i could represent network inputs or
outputs of other neurons. Fm,j(yj) is the nonlinear relationship between the neuron output node yj and the network
output om.

K10149_C012.indd 8 9/3/2010 2:23:03 PM

Levenberg–Marquardt Training	 12-9

Using Equation 12.28, one may notice that derivative of netj is

	 ∂
∂

=net
w

yj

j i
j i

,
, 	 (12.29)

and slope sj of activation function fj is

	 s
y
net

f net
netj

j

j

j j

j
=

∂
∂

=
∂

∂
()

	 (12.30)

Between the output node yj of a hidden neuron j and network output om, there is a complex nonlinear
relationship (Figure 12.2):

	 o F ym m j j= , () 	 (12.31)

where om is the mth output of the network.
The complexity of this nonlinear function Fm,j(yj) depends on how many other neurons are between

neuron j and network output m. If neuron j is at network output m, then om = yj and ′ =F ymj j() 1, where
′Fmj is the derivative of nonlinear relationship between neuron j and output m.

The elements of Jacobian matrix in Equation 12.16 can be calculated as

	 ∂
∂

=
∂ −()

∂
= − ∂

∂
= − ∂

∂
∂

∂
e
w

d o
w

o
w

o
y

y
net

p m

j i

p m p m

j i

p m

j i

p m

j

j

j

,

,

, ,

,

,

,

, ∂∂
∂
net
w

j

j i,

	 (12.32)

Combining with Equations 12.28 through 12.30, 12.31 can be rewritten as

	
∂
∂

= − ′e
w

F s yp m

j i
mj j j i

,

,
, 	 (12.33)

where ′Fmj is the derivative of nonlinear function between neuron j and output m.
The computation process for Jacobian matrix can be organized according to the traditional backprop-

agation computation in first-order algorithms (like the EBP algorithm). But there are also differences
between them. First of all, for every pattern, in the EBP algorithm, only one backpropagation process is
needed, while in the Levenberg–Marquardt algorithm the backpropagation process has to be repeated
for every output separately in order to obtain consecutive rows of the Jacobian matrix (Equation 12.16).
Another difference is that the concept of backpropagation of δ parameter [N89] has to be modified. In
the EBP algorithm, output errors are parts of the δ parameter:

	 δ j j mj m
m

M

s F e= ′
=

∑
1

	 (12.34)

In the Levenberg–Marquardt algorithm, the δ parameters are calculated for each neuron j and each
output m, separately. Also, in the backpropagation process, the error is replaced by a unit value [TM94]:

	 δm j j mjs F, = ′ 	 (12.35)

By combining Equations 12.33 and 12.35, elements of the Jacobian matrix can be calculated by

	
∂
∂

= −
e
w

yp m

j i
m j j i

,

,
, ,δ 	 (12.36)

K10149_C012.indd 9 9/3/2010 2:23:22 PM

12-10	 Intelligent Systems

There are two unknowns in Equation 12.36 for the Jacobian matrix computation. The input node, yj,i,
can be calculated in the forward computation (signal propagating from inputs to outputs); while δm,j is
obtained in the backward computation, which is organized as errors backpropagating from output neu-
rons (output layer) to network inputs (input layer). At output neuron m (j = m), δm,j = sm.

For better interpretation of forward computation and backward computation, let us consider the
three-layer multilayer perceptron network (Figure 12.3) as an example.

For a given pattern, the forward computation can be organized in the following steps:

	 a.	 Calculate net values, slopes, and outputs for all neurons in the first layer:

	 net I w wj i j i
i

ni

j
1 1

1

0
1= +

=
∑ , , 	 (12.37)

	 y f netj j j
1 1 1= () 	 (12.38)

	 s f
netj

j

j

1
1

1= ∂
∂

	 (12.39)

		 where
Ii are the network inputs
the superscript “1” means the first layer
j is the index of neurons in the first layer

	 b.	 Use the outputs of the first layer neurons as the inputs of all neurons in the second layer, do a
similar calculation for net values, slopes, and outputs:

	 net y w wj i j i
i

n

j
2 1 2

1

0
2

1

= +
=

∑ , , 	 (12.40)

	 y f netj j j
2 2 2= () 	 (12.41)

n1

+1 +1 +1

I1

I2

I3

Ini

n2 no
O1

O2

Om

Ono

… … … …

Figure 12.3  Three-layer multilayer perceptron network: the number of inputs is ni, the number of outputs is n0,
and n1 and n2 are the numbers of neurons in the first and second layers separately.

K10149_C012.indd 10 9/3/2010 2:23:31 PM

Levenberg–Marquardt Training	 12-11

	 s f
netj

j

j

2
2

2= ∂
∂

	 (12.42)

	 c.	 Use the outputs of the second layer neurons as the inputs of all neurons in the output layer (third
layer), do a similar calculation for net values, slopes, and outputs:

	 net y w wj i j i
i

n

j
3 2 3

1

0
3

2

= +
=

∑ , , 	 (12.43)

	 o f netj j j= ()3 3 	 (12.44)

	 s f
netj

j

j

3
3

3= ∂
∂

	 (12.45)

		 After the forward calculation, node array y and slope array s can be obtained for all neurons with
the given pattern.

		 With the results from the forward computation, for a given output j, the backward computation
can be organized as

	 d.	 Calculate error at the output j and initial δ as the slope of output j:

	 e d oj j j= − 	 (12.46)

	 δ j j js,
3 3= 	 (12.47)

	 δ j k,
3 0= 	 (12.48)

		 where
dj is the desired output at output j
oj is the actual output at output j obtained in the forward computation
δ j j,
3 is the self-backpropagation

δ j k,
3 is the backpropagation from other neurons in the same layer (output layer)

	 e.	 Backpropagate δ from the inputs of the third layer to the outputs of the second layer

	 δ δj k j k j jw, , ,
2 3 3= 	 (12.49)

		 where k is the index of neurons in the second layer, from 1 to n2.
	 f.	 Backpropagate δ from the outputs of the second layer to the inputs of the second layer

	 δ δj k j k ks, ,
2 2 2= 	 (12.50)

		 where k is the index of neurons in the second layer, from 1 to n2.
	 g.	 Backpropagate δ from the inputs of the second layer to the outputs of the first layer

	 δ δj k j i j i
i

n

w, , ,
1 2 2

1

2

=
=

∑ 	 (12.51)

		 where k is the index of neurons in the first layer, from 1 to n1.

K10149_C012.indd 11 9/3/2010 2:23:53 PM

12-12	 Intelligent Systems

	 h.	 Backpropagate δ from the outputs of the first layer to the inputs of the first layer

	 δ δj k j k ks, ,
1 1 1= 	 (12.52)

		 where k is the index of neurons in the second layer, from 1 to n1.

For the backpropagation process of other outputs, the steps (d)–(h) are repeated.
By performing the forward computation and backward computation, the whole 𝛅 array and y array

can be obtained for the given pattern. Then related row elements (no rows) of Jacobian matrix can be
calculated by using Equation 12.36.

For other patterns, by repeating the forward and backward computation, the whole Jacobian matrix
can be calculated.

The pseudo code of the forward computation and backward computation for Jacobian matrix in the
Levenberg–Marquardt algorithm is shown in Figure 12.4.

12.3.2  �Training Process Design

With the update rule of the Levenberg–Marquardt algorithm (Equation 12.25) and the computation of
Jacobian matrix, the next step is to organize the training process.

According to the update rule, if the error goes down, which means it is smaller than the last error,
it implies that the quadratic approximation on total error function is working and the combination
coefficient μ could be changed smaller to reduce the influence of gradient descent part (ready to speed
up). On the other hand, if the error goes up, which means it’s larger than the last error, it shows that it’s
necessary to follow the gradient more to look for a proper curvature for quadratic approximation and
the combination coefficient μ is increased.

for all patterns
% Forward computation
for all layers

for all neurons in the layer
calculate net; % Equation (12.28)
calculate output; % Equation (12.27)
calculate slope; % Equation (12.30)

end;
end;

%Backward computation
initial delta as slope;
for all outputs

calculate error;
for all layers

for all ne

urons in the previous layer
for all neurons in the current layer

multiply delta through weights
sum the backpropagated delta at proper nodes

end;
multiply delta by slope;

end;
end;

Figure 12.4  Pseudo code of forward computation and backward computation implementing Levenberg–
Marquardt algorithm.

AQ5

K10149_C012.indd 12 9/3/2010 2:23:55 PM

Levenberg–Marquardt Training	 12-13

Therefore, the training process using Levenberg–Marquardt algorithm could be designed as follows:

	 i.	 With the initial weights (randomly generated), evaluate the total error (SSE).
	 ii.	 Do an update as directed by Equation 12.25 to adjust weights.
	 iii.	 With the new weights, evaluate the total error.
	 iv.	 If the current total error is increased as a result of the update, then retract the step (such as reset

the weight vector to the precious value) and increase combination coefficient μ by a factor of 10 or
by some other factors. Then go to step ii and try an update again.

	 v.	 If the current total error is decreased as a result of the update, then accept the step (such as keep
the new weight vector as the current one) and decrease the combination coefficient μ by a factor
of 10 or by the same factor as step iv.

	 vi.	 Go to step ii with the new weights until the current total error is smaller than the required value.

The flowchart of the above procedure is shown in Figure 12.5.

12.4  �Comparison of Algorithms

In order to illustrate the advantage of the Levenberg–Marquardt algorithm,
let us use the parity-3 problem (see Figure 12.6) as an example and make a
comparison among the EBP algorithm, the Gauss–Newton algorithm, and
the Levenberg algorithm.

Three neurons in multilayer perceptron network (Figure 12.7) are used
for training, and the required training error is 0.01. In order to compare
the convergent rate, for each algorithm, 100 trials are tested with randomly
generated weights (between −1 and 1).

wk , m = 1

m = m + 1

wk+1 =wk –(JT
k J+ μI)–1 Jk ekm ≤ 5

μ = μ × 10
restore wk

m > 5

wk =wk+1

Ek+1 > Ek Ek+1 Ek+1 ≤ Ek

Ek+1 ≤ Emax

Ek

Jacobian matrix computation μ = μ ÷ 10
wk =wk+1

Error evaluation

Error evaluation

End

Figure 12.5  Block diagram for training using Levenberg–Marquardt algorithm: wk is the current weight, wk+1
is the next weight, Ek+1 is the current total error, and Ek is the last total error.

–1
OutputsInputs

1
1

–1
1

–1
–1
1

–1
–1
1
1

–1
–1
1
1

–1
–1
–1
–1
1
1
1
1

–1
1

–1
1

–1
1

–1
1

Figure 12.6  Training
patterns of the parity-3
problem.

K10149_C012.indd 13 9/3/2010 2:23:56 PM

12-14	 Intelligent Systems

Output
Input 1

Input 2

Input 3

+1 +1

Figure 12.7  Three neurons in multilayer perceptron network.

1.0E+01

1.0E–00

1.0E–01

1.0E–02

1.0E–03

1.0E–04

(a)

(b)

0 200 400 600 800 1000
Iteration

1200 1400 1600 1800 2000

1.0E+01

1.0E–00

1.0E–01

1.0E–02

1.0E–03

1.0E–04

Iteration
500450400350300250200150100500

(c) (d)

1.0E+01

1.0E–00

1.0E–01

1.0E–02

1.0E–03

1.0E–04

Iteration

0 2 4 6 8 10 12

1.0E+01

1.0E–00

1.0E–01

1.0E–02

1.0E–03

1.0E–04

Iteration

0 2 4 6 8 10 12

Figure 12.8  Training results of parity-3 problem: (a) EBP algorithm (α = 1), (b) EBP algorithm (α = 100) (c)
Gauss–Newton algorithm, and (d) Levenberg–Marquardt algorithm

K10149_C012.indd 14 9/3/2010 2:23:58 PM

Levenberg–Marquardt Training	 12-15

The training results are shown in Figure 12.8 and the comparison is presented in Table 12.2. One
may notice that: (1) for the EBP algorithm, the larger the training constant α is, the faster and less
stable the training process will be; (2) Levenberg–Marquardt is much faster than the EBP algorithm
and more stable than the Gauss–Newton algorithm.

For more complex parity-N problems, the Gauss–Newton method cannot converge at all, and the
EBP algorithm also becomes more inefficient to find the solution, while the Levenberg–Marquardt algo-
rithm may lead to successful solutions.

12.5  �Summary

The Levenberg–Marquardt algorithm solves the problems existing in both gradient descent method and
the Gauss–Newton method for neural-networks training, by the combination of those two algorithms.
It is regarded as one of the most efficient training algorithms [TM94].

However, the Levenberg–Marquardt algorithm has its flaws. One problem is that the Hessian matrix
inversion needs to be calculated each time for weight updating and there may be several updates in each
iteration. For small size networks training, the computation is efficient, but for large networks, such as
image recognition problems, this inversion calculation is going to be a disaster and the speed gained
by second-order approximation may be totally lost. In that case, the Levenberg–Marquardt algorithm
may be even slower than the steepest descent algorithm. Another problem is that the Jacobian matrix
has to be stored for computation, and its size is P × M × N, where P is the number of patterns, M is the
number of outputs, and N is the number of weights. For large-sized training patterns, the memory cost
for Jacobian matrix storage may be too huge to be practical. Also, the Levenberg–Marquardt algorithm
was implemented only for multilayer perceptron networks.

Even though there are still some problems not solved for the Levenberg–Marquardt training, for
small- and medium-sized networks and patterns, the Levenberg–Marquardt algorithm is remarkably
efficient and strongly recommended for neural network training.

References

[AW95] T. J. Andersen and B. M. Wilamowski, A modified regression algorithm for fast one layer neural
network training, World Congress of Neural Networks, vol. 1, pp. 687–690, Washington, DC, July
17–21, 1995.

[EHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating
errors, Nature, 323, 533–536, 1986.

[J88] P. J. Werbos, Back-propagation: Past and future, in Proceedings of International Conference on Neural
Networks, vol. 1, pp. 343–354, San Diego, CA, 1988.

[L44] K. Levenberg, A method for the solution of certain problems in least squares, Quarterly of Applied
Mathematics, 5, 164–168, 1944.

[M63] D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIAM Journal on
Applied Mathematics, 11(2), 431–441, June 1963.

[N89] Robert Hecht Nielsen, Theory of the back propagation neural network in Proceedings 1989 IEEE
IJCNN, pp. 1593–1605, IEEE Press, New York, 1989.

[O92] M. R. Osborne, Fisher’s method of scoring, International Statistical Review, 86, 271–286, 1992.

Table 12.2  Comparison among Different Algorithms for Parity-3 Problem

Algorithms Convergence Rate (%) Average Iteration Average Time (ms)

EBP algorithm (α = 1) 100 1646.52 320.6
EBP algorithm (α = 100) 79 171.48 36.5
Gauss–Newton algorithm 3 4.33 1.2
Levenberg–Marquardt algorithm 100 6.18 1.6

K10149_C012.indd 15 9/3/2010 2:23:58 PM

12-16	 Intelligent Systems

[PS94] V. V. Phansalkar and P. S. Sastry, Analysis of the back-propagation algorithm with momentum,
IEEE Transactions on Neural Networks, 5(3), 505–506, March 1994.

[TM94] M. T. Hagan and M. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE
Transactions on Neural Networks, 5(6), 989–993, 1994.

[W02] B. M. Wilamowski, Neural networks and fuzzy systems, Chap. 32 in Mechatronics Handbook, ed.
R. R. Bishop, CRC Press, Boca Raton, FL, pp. 33-1–32-26, 2002.

[W09] B. M. Wilamowski, Neural network architectures and learning algorithms, IEEE Industrial
Electronics Magazine, 3(4), 56–63, 2009.

[W96] B. M. Wilamowski, Neural networks and fuzzy systems, Chaps. 124.1 to 124.8 in The Electronic
Handbook, CRC Press, Boca Raton, FL, pp. 1893–1914, 1996.

[WB99] B. M. Wilamowski and J. Binfet, Do fuzzy controllers have advantages over neural controllers in
microprocessor implementation in Proceedings of 2nd International Conference on Recent Advances
in Mechatronics (ICRAM’99), pp. 342–347, Istanbul, Turkey, May 24–26, 1999.

[WB01] B. M. Wilamowski and J. Binfet Microprocessor implementation of fuzzy systems and neural net-
works, in International Joint Conference on Neural Networks (IJCNN’01), pp. 234–239, Washington,
DC, July 15–19, 2001.

[WCKD07] B. M. Wilamowski, N. J. Cotton, O. Kaynak,, and G. Dundar, Method of computing gra-
dient vector and Jacobian matrix in arbitrarily connected neural networks, in IEEE International
Symposium on Industrial Electronics (ISIE 2007), pp. 3298–3303, Vigo, Spain, June 4–7, 2007.

[WCKD08] B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dundar, Computing gradient vector
and Jacobian matrix in arbitrarily connected neural networks, IEEE Transactions on Industrial
Electronics, 55(10), 3784–3790, October 2008.

[WCM99] B. M. Wilamowski. Y. Chen, and A. Malinowski, Efficient algorithm for training neural net-
works with one hidden layer, in 1999 International Joint Conference on Neural Networks (IJCNN’99),
pp. 1725–1728, Washington, DC, July 10–16, 1999. #295 Session: 5.1.

[WH10] B. M. Wilamowski and H. Yu, Improved computation for Levenberg Marquardt training, IEEE
Transactions on Neural Networks, 21, 930–937, 2010.

[WHM03] B. Wilamowski, D. Hunter, and A. Malinowski, Solving parity-n problems with feedforward
neural network, in Proceedings of the IJCNN’03 International Joint Conference on Neural Networks,
pp. 2546–2551, Portland, OR, July 20–23, 2003.

[WJ96] B. M. Wilamowski and R. C. Jaeger, Implementation of RBF type networks by MLP networks,
IEEE International Conference on Neural Networks, pp. 1670–1675, Washington, DC, June 3–6,
1996.

[WT93] B. M. Wilamowski and L. Torvik, Modification of gradient computation in the back-propagation
algorithm, in Artificial Neural Networks in Engineering (ANNIE’93), St. Louis, MO, November 14–17,
1993.

[YW09] H. Yu and B. M. Wilamowski, C++ implementation of neural networks trainer, in 13th
International Conference on Intelligent Engineering Systems (INES-09), Barbados, April 16–18,
2009.

K10149_C012.indd 16 9/3/2010 2:23:58 PM

