
Improving software quality using statistical testing techniques

D.P. Kelly* , R.S. Oshana

Raytheon Company, 13500 N. Central Expressway, P.O. Box 655477, Dallas, TX 75265 USA

Abstract

Cleanroom usage-based statistical testing techniques have been incorporated into the software development process for a program in the
Electronic Systems business of Raytheon Company. Cost-effectively improving the quality of software delivered into systems integration
was a driving criterion for the program. Usage-based statistical testing provided the capability to increase the number of test cases executed
on the software and to focus the testing on expected usage scenarios. The techniques provide quantitative methods for measuring and
reporting testing progress, and support managing the testing process. This article discusses the motivation and approach for adopting usage-
based statistical testing techniques, and experiences using these testing techniques.q 2000 Elsevier Science B.V. All rights reserved.

Keywords: Usage-based statistical testing; Cleanroom

1. Introduction

The Electronic Systems business of Raytheon Company
develops real-time embedded software for defense systems.
Recently, a large real-time embedded software development
effort in Electronic Systems incorporated Cleanroom tech-
niques into their software development process [1–3].
Cleanroom software engineering techniques consist of a
body of practical and theoretically sound engineering prin-
ciples applied to the activity of software engineering (Fig. 1).
A main component of Cleanroom is the use of usage-based
profiles to test the software system. These usage profiles
become the basis for a statistical test of the software, result-
ing in a scientific certification of the quality of the software
system. The fundamental goal driving the incorporation of
Cleanroom techniques was to improve the quality of the
software delivered to the system integration phase of system
development.

2. Historical testing process

Historically, the testing phases of the software develop-
ment process consisted of unit testing, unit integration and
finally product level testing (Computer Software Configura-
tion Item, or CSCI in Department of Defense parlance),
which culminates in a formal qualification test. Unit testing
and unit integration testing are performed by the software
development team. CSCI level testing and qualification

testing are performed by a team composed of software
development team members, system engineers and software
quality engineers.

Prior to unit testing, the development team performed a
formal inspection of the software source code. Unit testing
is a structural testing activity and the completion criteria for
unit testing is 100% path coverage at the unit level and
verification of correct functionality of the unit. Unit testing
was executed on the host development environment and
supported with a custom built automated unit test environ-
ment. The test environment was capable of executing the
unit under test, feeding input data to the unit, capturing
outputs and internal data structures, comparing results to
expected values, and generating test reports. Significant
effort was spent to develop and maintain the unit test
environment.

Unit integration testing has both structural and functional
aspects. Early in unit integration testing, the focus is struc-
tural as modules of the software are integrated together to
form complete functionality. Later in the process, the focus
becomes functional as complete functions are tested. Unit
integration was partially performed in the unit test environ-
ment and partially on the target hardware using another
custom built test environment. CSCI testing is a functional
test with the testing team developing and executing the
detailed test procedures for qualification tests specified by
an Independent Verification and Validation (IV&V) agent.
Considerable effort was required by the software develop-
ment team to generate the test procedures associated with
the qualification tests. CSCI level testing was performed on
the target hardware.

Information and Software Technology 42 (2000) 801–807

0950-5849/00/$ - see front matterq 2000 Elsevier Science B.V. All rights reserved.
PII: S0950-5849(00)00124-5

www.elsevier.nl/locate/infsof

* Corresponding author.
E-mail address:dkelly@raytheon.com (D.P. Kelly).

The software ultimately delivered by this development
process and associated system integration activities
exceeded expectations with an error density of 0.07 Soft-
ware Trouble Reports (STR) per KLOC reported during the
first year of operational use. During unit testing, a relatively
small number of defects was found and most of the effort
was spent in developing test cases to achieve 100% path
coverage. Experience showed that the most insidious
defects resulted from high level interactions of complete
software functionality being used in scenarios, which the
lower level testing failed to expose. These defects were
found mostly during system integration.

3. Motivation to improve the testing process

As the process for the new development effort was being
defined, the software testing process was reviewed for pos-
sible enhancements and improvements. While the historic
testing approach had yielded ultimately high quality soft-
ware to the customer, there were issues with the testing
approach:

1. The cost of achieving 100% path coverage in unit
testing considering the quantity of defects found by the
activity.

2. High level defects found in system integration required
rework during a schedule choke point in the system’s
development.

3. The developer’s knowledge of the structure of the soft-
ware tended to bias their tests.

4. The difficulty in accurately judging progress during test-
ing. The testing approach was schedule driven with no
quantitative stopping criteria.

Unit testing was an obvious candidate for review for
improvements to the historical approach. Adequate unit test-
ing environments are not readily available commercially.
To build a unit testing environment, significant effort by
the developing organization is required. While in theory
unit testing is performed on a unit whenever a change is
made to it, in practice unit testing is performed when the
software is initially developed and in later stages of the
program only when a unit is redesigned or significant new
capabilities added. Furthermore, with the static checking
capability of modern compilers and the use of structured
formal code inspections, the number of defects discovered
during unit testing was relatively low. Using Cleanroom box
structure design and the associated verification techniques
reinforces the inspection process. The verification tech-
niques provide a mechanism for rigorously reviewing soft-
ware source code for correct functionality. When allocating
limited test budgets and schedules, eliminating path
coverage-based unit testing has obvious appeal.

Functional unit integration and product level testing
approaches needed strengthening to detect defects resulting
from the complex streams of input stimuli. Historic func-
tional testing was compromised by the developer’s intimate
knowledge of code structure and hence biased their view of
what should be emphasized during testing. Methods for
quantitatively judging progress also need to be improved
as previous measures were typically ‘M out of N’ style
metrics of test cases executed, passed, and failed. These
measures tend to encourage linear extrapolations to estimate
completion dates which in turn proved to be overly
optimistic.

4. Cleanroom usage-based statistical testing

The Cleanroom usage-based statistical testing process has
several aspects that addressed directly these concerns with
the historical testing approach. Usage-based testing focuses
effort on modeling expected usage scenarios for the soft-
ware [4,5]. Usage models can be considered as a complete
generalization of Jacobson use scenarios. Jacobson use
scenarios typically define a single execution path through
the software. A usage model will generate all possible use
cases including multiple sequential execution paths.
Conceptually, a usage model is a directed graph with
nodes and arcs, and transition probabilities associated
with each arc in the graph. A hierarchy of usage models
with appropriate transition probabilities is used to encom-
pass the full range of usage possibilities including error
cases and other ‘abnormal’ usage scenarios. The fidelity
with which the usage models reflect real-world usage is
dependent upon the accuracy of the transition probabilities
used in the models. While the probabilities do not need to
have absolute fidelity with the operational usage their
magnitude and relative ratios need to be correct. Informa-
tion needed to build the models can be derived from

D.P. Kelly, R.S. Oshana / Information and Software Technology 42 (2000) 801–807802

Specification

Function Usage

Increment
Planning

Box structure
Specification and
Design

Usage Modeling
and Test Case
Generation

Statistical
Testing

Quality
Certification Model

Functional
Specification

Usage
Specification

Incremental
Development
Plan

Source
Code

Test
Cases

Failure Data

Measurements of
Operational Performance

Improvement and Feedback

Fig. 1. The cleanroom software engineering process.

historical data, user experience, operational scenario
documents and other such sources.

Usage modeling provides another view of the required
software functionality and provides a mechanism for
systems engineering, software developers, and customers
to review usage scenarios for the software. Using a
hierarchy of usage models, it is possible to develop
system-level usage models and consistently flow the usage
scenarios to lower level software product testing. By focus-
ing test development on operational usage scenarios with
model reviews including system engineering personnel,
proper focus on system level issues is incorporated and
flowed to lower levels of testing than experienced
previously. The usage models are developed by a separate
team from the team developing the source code and this
avoids any biases inadvertently introduced from knowing
the details of the software structure.

The statistical testing techniques of cleanroom provide
alternative quantitative methods for measuring and report-
ing progress. The measures of reliability, discrimination and
distance are specifically defined in the Cleanroom literature
[4]. These measures provide insight into how well the
sample of tests executed reflects the input population and
quantifies the reliability of the software. Progress can also
be measured and reported in terms of node and arc coverage
of the usage models. This latter reporting mechanism is
especially useful for providing a view of the extent of
usage model testing performed and that remaining. The test-
ing techniques of Cleanroom provide support for deciding
when to stop testing and advance the software to the next
stage of system development. ‘What-if’ scenarios can be run
on the models and quantitative measures returned on the
benefits to continued testing. This capability can be used

to determine when testing has reached the point of
diminishing returns.

Historically, during unit integration and CSCI level test-
ing, a relatively small collection of test cases is used to
verify the software product’s functionality. Maximizing
the practical benefits of the Cleanroom approach to testing
requires an automated test environment. Like unit testing
environments, commercial statistical testing environments
are not readily available. For our development we built an
automated test environment. Given that end-to-end user
functionality is tested during statistical testing, our experi-
ence has been that the Cleanroom test environment required
significantly less effort to develop and build than our
historic unit test environment (approximately 20% of the
effort).

5. Incorporating cleanroom testing techniques

Following a consensus building process that included
affected parties: systems engineering, customer representa-
tives, and software developers, a revised test strategy was
defined, which incorporated Cleanroom concepts into the
testing approach and addressed classic structural testing
concerns. Usage models are developed that address the
stratification of usage scenarios: normal use, adverse use,
error case use. A minimal cost cover sample of test cases for
the usage models is generated. This minimal covering set is
the first set of test cases executed on the software incre-
ments, which are instrumented for code coverage. This
approach provides insight into the structural coverage of
the software and provides a sanity check of the usage
models against the software design. If the usage models
accurately model the required software functionality then
a high level of code coverage should be expected. Informal
reports from organizations using this approach report cover-
age rates of.90%. Code not executed by the minimal
covering set is examined to understand why it was not
executed. Possible reasons for non-executed code include
deficiencies in the usage models, excess functionality in the
software, and error case paths that were not executed.

In general, no unit testing is required as part of the defined
software development process. The development process
does not forbid unit testing, and no explicit steps are taken
to prohibit developers from performing unit testing.
However, no support is provided for unit testing and devel-
opers electing to perform unit testing must meet the same
schedule and budget goals of developers not performing unit
testing. During the software implementation phase the
development teams formally inspect the software. Entry
criteria for the review includes clean compilation of the
software and appropriate preprocessors to perform static
code analysis (i.e. thec language lint tool). The inspection
process includes the Cleanroom verification steps for veri-
fying software functionality. Prior to releasing the software
to the testing teams, the development teams are responsible

D.P. Kelly, R.S. Oshana / Information and Software Technology 42 (2000) 801–807 803

Table 1
Usage model size details

Usage model # Usage states # Arcs

Products with both control and algorithm functionality
Product A—normal usage 162 1455
Product A—adverse usage 16 39
Product B—normal usage 42 379
Product B—adverse usage 24 67
Product C 15 44
Product D 45 65
Average 50.7 341.5

Products with only control functionality
Product E—adverse usage 16 86
Product E—specialized 8 17
Product F—normal usage 7 38
Product F—normal usage 2 11 37
Product F—adverse usage 10 52
Product G—normal usage 7 11
Product G—normal usage 2 21 50
Product G—normal usage 3 15 37
Product G—normal usage 4 6 19
Average 11.2 38.6

for successfully compiling the software and generating the
load module for the software increment being developed.
The development teams do not perform any testing on the
resulting load image.

The number of usage models and size of the models
varied across the software products. On average there are
six models per product with the number ranging from 2 to 8
for the set of products developed. The size of the usage
models varied with a wide range in both number of usage
states (nodes) and arcs. Details for a representative set of
usage models are shown in Table 1. Products containing a
mix of control software and algorithm software generally
had larger usage models than products containing only
control functionality.

The usage models include references to user defined func-
tions, which generate the detailed input data for the software
under test. These functions are associated with the arcs in
the usage model, which drive the transitions between the
usage states (nodes) of the model. Input equivalence par-
titioning, bounds checking and other decomposition of the

input domain of the data are explicitly addressed via the user
functions. These user functions are included in the analysis
of the ability of the usage model to generate adequately and
test samples from the input domain of the software. Taken
together, the usage models and the user-defined input data
generation functions are capable of generating far more data
sets and test sequences for execution than hand crafted test
cases.

6. Developing an automated environment

An automated testing environment was developed to
execute the statistically generated test scripts during the
certification phase (Fig. 2) [6]. Usage models are created
directly from the box structures developed during the speci-
fication phase. The usage models are translated into the
appropriate test grammars and executed in a special test
equipment (STE) environment. Product level requirements
that are difficult to verify using statistical testing are verified
via specially crafted test cases. In a few algorithmically
intensive products, many of the algorithm related require-
ments are verified using one or more crafted test cases.
Virtually, all of the control-based requirements are verified
using statistically generated test scripts based on a set of
usage models representing different stratifications of the
system (normal use, adverse use, etc.). The minimal cover-
ing set of test scripts from the usage models is achieving
80–90% statement coverage in most products.

The test environment includes the following major
components (Fig. 3):

• Operator test software—also referred to as the ‘user
function’. There is a different user function for each of
the usage models developed for the software. These

D.P. Kelly, R.S. Oshana / Information and Software Technology 42 (2000) 801–807804

Software Test Station

Statistical
test script
generation

Test
Sequences

Automated
test generation
interface

Test Results
Verification

Expected
Results

Output Data/
Results

Oracle

Usage
Models

Crafted
Test

Cases

Script
SW Test Support

Software
(TSS)

Software
Under Test

Control

Data

Control and
Sequencing of
Script

Test
Data/

Results

Graphical
representation

Output Data/
Responses

Output Data/
Responses

Certification team

Fig. 2. Automated testing environment.

Operator test code
(User Function)

Operator interface

Labview
(virtual instruments)

Station
specific STE
S/W

Common
STE S/W

Debugger

Solaris Operating System

Sun Workstation

Hardware
(or H/W
Emulation)

VxWorks OS

Single Board Computer

Sun to VME I/F
Ethernet

Fig. 3. Software components for the testing environment.

programs are written inc and generate the message
sequences that drive the software under test for each of
the test scripts generated from the usage model.

• Labview interface—this software is composed of a
number of different Labview ‘virtual instruments’ used
to provide an interface to the operator executing the tests.

• Station specific Special Test Equipment (STE) soft-
ware—this software provides the low level functionality
required by each of the different software test stations.

• Common STE software—this software is the Application
Programming Interface (API) to the rest of the software.
It provides the capabilities to watch for certain events
occurring in the software under test, log those results,
and provide the information to the user function software
and Labview virtual instruments.

Once a test has been executed and the input and output
events logged in an output file, the data is parsed into several
different oracle files (Fig. 4). Each of these oracle files is
used for a different pass/fail criteria. ‘Generic’ oracles are
used to determine if the high level sequencing of the test
was performed correctly. Other oracles are used to examine
the data to determine product specific pass/fail criteria such
as:

• Does the data reflect the expected outputs as determined
by the system engineering model(s)?

• Does the raw output data match the expected outputs
defined in the algorithm document?

• Does the output message sequence match what was
expected in the Software Requirements Document?

D.P. Kelly, R.S. Oshana / Information and Software Technology 42 (2000) 801–807 805

Software
under test

Control/
log S/W

Test
results
file

* input
messages

* expected
output
messages

Oracle 1

Oracle 3

Oracle 2

System
engineering
model

SRS

Algorithm
Document

Did the message occur?User
functions

Fig. 4. Testing environment oracle.

static
analysis

fully specified
and compiled
code

* code inspection
* correctness

verification
* tools (lint)

unit
test ?

unit test

* code coverage
* oracle compare

run time
code
analysis

yes

no operational
data profiles

statistical
testing with
usage models

* leak detectors
* instrumentation

* field
data

function
theoretic
sequence
enumeration

testing
oracle

and usage
model creation

function
mapping
rules test grammar

Fig. 5. Hybrid algorithm software testing model.

7. Testing algorithmically intensive software

Some of the software products being developed imple-
mented highly mathematically intensive signal processing
algorithms. As this type of processing tends to be very
sensitive to input data sets that are large and complex, a
hybrid testing approach was utilized for this software. A
set of cardinal test cases had been developed by the algo-
rithm development community within the program to verify
small functional blocks of the algorithms, which equated to
routines or modules in the operational software. From a
practical perspective, it is impossible to verify fully these
modules at a user end-to-end functional level and conse-
quently these signal processing routines undergo ‘unit
level’ testing utilizing the cardinal data sets. These tests
are designed to test the mathematical functionality of the
routines and are not explicitly designed to guarantee 100%
path coverage. Usage model-based testing is utilized for this
software to check overall end-to-end control flow and
proper functioning in the larger context of the system
operation. This hybrid approach to certify algorithmically
intensive software included the following steps (Fig. 5):

• a formal code inspection and correctness verification
phase;

• an optional level of unit and function testing (based on
the nature of the algorithms), which included both static
and run time analysis;

• an operational data profile phase using real data collected
from various user environments;

• a final statistical testing phase using usage models
developed for different user and usage stratifications.

8. Limitations to modeling

There are limitations to modeling software systems that
must be understood in order to properly analyze the statis-
tics generated when using statistical techniques such as the
ones discussed in this paper. The quote “All models are
wrong, but some are useful” has some truth to it. The

main point to remember when modeling any type of system
using any technique is that all modeling approaches lack, to
some extent, the naturalness for representative power. The
Cleanroom Markov approach has limitations in handling
some of the common issues such as counting and concur-
rency. There are methods for circumventing some of these
issues but they can result in state explosion and hence larger
models. Also, the more abstract a model is, the less confi-
dent one should be in the predicted reliability generated by
the tools. With prudent use, the statistical techniques
discussed in this paper can be very useful in any testing
organization and help lead to higher quality software
products.

9. Results

Cleanroom usage-based statistical testing along with
sequence-based specification techniques were incorporated
into the program’s software development process. Overall,
the defects found out of phase during the software develop-
ment process have been reduced compared to historical
data. There have been very few defects found in the soft-
ware fully specified using sequence-based enumeration
(Fig. 6). Most of the defects are traced to language
semantics, algorithm misunderstanding, and other
semantic mistakes. Software defects were detected during
the testing process that historically had not been found
using other testing techniques. Cleanroom techniques do
require a commitment and a disciplined approach and
matched well with the mature CMM framework
established for the program [7]. The usage-based statistical
testing approach worked very well for control-oriented
software. For algorithmically intensive software, a hybrid
testing approach needed to be used to properly verify
algorithm implementation. The focus on usage-based
testing has proven to be very effective. In one case, the
certification team found defects immediately after the
development team handed over a product they felt was
working (based a significant amount of function
testing).

D.P. Kelly, R.S. Oshana / Information and Software Technology 42 (2000) 801–807806

Pre-Delivery Defects/Kloc by Product Type

0

1

2

3

4

5

Control Product Algorithm
Product

Algorithm/Control
Product

Product T ype
D

ef
ec

ts
/K

lo
c

Fig. 6. Pre-delivery defects by software type.

10. Conclusions

The decision to incorporate Cleanroom techniques into
the software development process was driven by a desire to
cost-effectively improve the quality of our software while
providing quantitative support for managing the testing
phases of software development. Cleanroom testing tech-
niques addressed these goals. Removing the structural
path-coverage based unit-testing step was a concern and
ultimately the issue came down to whether the probability
of defects, historically detected in unit test, slipping through
usage-based testing scenarios was sufficient to warrant the
cost and time of unit testing for 100% path coverage. This
concern was addressed by executing a minimal covering set
of test cases on instrumented code, which provided insight
into path coverage. As regards our quality improvement,
cost-effectiveness and ease of adoption goals, Cleanroom
statistical testing techniques have met or exceeded our
expectations.

References

[1] H.D. Mills, M. Dyer, R.C. Linger, Cleanroom Software Engineering,
IEEE Software September (1987) 19–25.

[2] D.P. Kelly, Robert S.Oshana, Integrating cleanroom software methods
into an SEI level 4–5 program, Crosstalk, November 1996.

[3] R.C. Linger, Cleanroom Process Model, IEEE Software March (1994)
50–58.

[4] J.A. Whittaker, J.H. Poore, Markov analysis of software specifications,
ACM Transactions on Software Engineering and Methodology,
January 1993.

[5] G.H. Walton, J.H. Poore, C.J. Trammel, Statistical testing of software
based on a usage model, Software Practice and Experience, January
1993.

[6] R.S. Oshana, An automated testing environment to support operational
profiles of software intensive systems, 10th International Software
Quality Conference, May 1999.

[7] R.S. Oshana, R.C. Linger, Capability maturity model software
development using cleanroom software engineering principles, 32nd
Hawaii International Conference on System Sciences, January 1999.

D.P. Kelly, R.S. Oshana / Information and Software Technology 42 (2000) 801–807 807

