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Abstract

In this thesis, Global Positioning System (GPS) and radar measurements are utilized

in a multi-sensor architecture to achieve a confident relative positioning solution between

two vehicles. A GPS solution providing a three-dimensional positioning vector is deter-

mined using pseudorange and carrier phase measurements. The carrier phase measurements

make sub-meter level accuracy achievable. However, the carrier phase ambiguity must be re-

solved before estimating the relative position vector. A Dynamic Base Real-Time Kinematic

(DRTK) positioning algorithm using differential GPS methods is used to achieve highly pre-

cise relative positioning between the two GPS antennas. A comparison of the performance

of the DRTK algorithm using either single frequency (L1 or L2 frequency only) or dual

frequency (L1 and L2 frequency) measurements is introduced.

The radar measurements including range, range rate, and bearing are utilized in a prob-

abilistic data association filter (PDAF). The PDAF determines which of the radar channels’

solutions are considered valid, and the weighted mean of these solutions is used as the se-

lected target measurements. The PDAF algorithm is discussed in great detail, and the

performance of the PDAF algorithm using radar measurements and the performance of the

DRTK solution are compared and presented demonstrating that the radar PDAF solution

tracks the desired target with reasonable accuracy as long as the lead vehicle is in line of

sight.

Finally, the DRTK algorithm is extended to incorporate the radar PDAF solution to

increase solution availability, output rate, and reliability of the algorithm’s solution. The

PDAF algorithm’s solution using the radar measurements can be utilized during GPS out-

ages. The update rate of the radar measurements is ten times faster than the rate of the GPS

receiver. The resultant combined system produces estimates at a much higher output rate.
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The integrated DRTK/PDAF system is implemented with three integration architectures

including two “switch” methods and a sensor fusion Kalman filter. Analysis of the accuracy

of the integrated systems is presented using experimental data collected on various test ve-

hicles, and some conclusions can be made. The GPS measurements can assist the PDAF

solution when the lead vehicle is not visible to the following vehicle. Also, the DRTK/PDAF

integrated system produces a more robust relative positioning solution at a higher update

rate than either sensor could produce individually.
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Chapter 1

Introduction

1.1 Background and Motivation

The United States Air Force designed a system that could provide the location of a user

anywhere in the world in the 1970s. A few years later, 24 NAVSTAR satellites were orbiting

the earth in six orbital planes to ensure that at least four satellites were visible from a certain

point on the earth’s surface. The intended use for the Global Positioning System (GPS) was

air and sea navigation. Both air and sea travel would ensure good sky visibility. However,

during ground vehicle navigation, it can be difficult to acquire good sky visibility around

trees and tall buildings, and because GPS requires four satellites to determine position, the

system is limited. Due to this limitation, more satellites have been launched to bring the total

number of satellites to 32 in the constellation. The accuracy of a standalone GPS solution

is within a couple meters which is sufficient for some applications, but other applications

require a much more precise determination of position. There are several sources of error that

degrade the GPS signal and make it difficult to acquire the desired level of precision. Most

of the error comes from atmospheric effects on the signal as it travels through the ionosphere

and troposphere. Methods involving differential techniques can be used to mitigate these

common errors between the receivers if they are in close proximity to one another. Here,

“close” is defined as approximately under ten kilometers. Differential techniques have come

to be known as Differential GPS (DGPS).

Some applications require an even higher level of precision than DGPS for positioning.

A technique called Real-Time Kinematic (RTK) positioning can be used in these instances.

This method utilizes the carrier phase measurement of the GPS signal, which beforehand was

not used. Using the carrier phase for positioning can result in centimeter-level positioning.
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However, in order to use the carrier phase, the whole number of cycles from the receiver to the

satellite of the carrier phase measurement must be determined. This unknown value is called

the integer ambiguity. A Kalman filter can be used to calculate floating point approximate

estimates of the ambiguities, but the ambiguities must be integers which are more difficult

to determine. In order to solve for the integer ambiguities, the LAMBDA method was

created by Peter Teunnisen and other researchers at Delft University. Once the ambiguities

are determined and assuming the receiver does not lose lock with the satellites, a position

solution with accuracy of approximately one or two centimeters can be maintained. A static

base station is required for RTK to ensure accurate global positioning. In this thesis, relative

positioning is more important than global positioning; therefore, the algorithm calculates the

relative position between the two receivers using the Dynamic Base RTK (DRTK) method.

This method is most suitable for scenarios that are more concerned with relative positioning

than global positioning with fixed or moving baselines.

As navigation systems are being developed, it is apparent that accurate and precise

positioning is an imperative for both military and civilian ground vehicle guidance. A de-

sire for autonomous vehicle control and navigation has become evident in the research and

academic world. Advancements in this area such as precise spacing systems and collision

avoidance systems would increase safety and increase fuel economy for vehicles traveling in

a convoy. Convoy technology is needed whether the system is simply updating the drivers

of the spacing between the vehicles or whether the system is functioning completely au-

tonomously in Adaptive Cruise Control (ACC) or coordinated ACC using vehicle to vehicle

(V2V) communication. In either of these cases, the ability of the relative position solution

to be consistently precise in tight spacing is extremely important to ensure the safety of

everyone on the road. Current systems employ radar or lidar sensors to measure range and

range rate between vehicles. Radar, or radio detection and ranging, is often used to deter-

mine distance and speed of vehicles relative to the user. A radar system utilized in this work

will be discussed in Chapter 3. For further information on the background of radar, see [10].
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However, many of these current systems require extremely expensive sensors in order to en-

sure a stable solution often making them impractical for commercial use. Therefore, there

is a significant desire for a cost-effective navigation system that civilians can afford. As the

need for this technology increases, navigation systems incorporating multiple sensors have

been developed and relied upon in many navigation situations. The work in this thesis will

investigate methods of utilizing both the GPS signal and radar measurements in a single

multi-sensor architecture for robust relative positioning. The cost-effectiveness of the navi-

gation system is one of the most important parameters considered in this work. One of the

main goals of this work is to develop and implement a robust relative positioning system

that is also inexpensive and easily implemented.

1.2 Prior Work

This thesis involves integrating GPS and radar measurements to calculate relative po-

sitioning data for navigation of a following vehicle in a convoy scenario. The relative GPS

positioning is performed using the differenced carrier phase measurements. This measure-

ment and process will be described in further detail in Chapter 2. In 1985, the first use

of the carrier phase measurements in a dynamic scenario occurred [19]. The carrier phase

measurements include an innate ambiguity that must be resolved. This ambiguity is easily

solved for as a floating point value, but it is important to fix the ambiguities into integers

which will result in increased accuracy. The Least Squares Ambiguity Decorrelation Ad-

justment or LAMBDA method was developed by Delft University researchers in the 1990s

shown in [24].

There is considerable work in the literature for the process of target selection for ground

vehicles using radars. Different algorithms using the range, bearing, and range rate outputs

of the radar can be found in [5] and [21] including the base algorithm that is used in this

work which will be described in detail in Chapter 3. Also, much work has been done in the

study of multi-vehicle target selection in Adaptive Cruise Control (ACC) applications [16].
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There have also been considerable efforts in the area of multi-sensor fusion involving

GPS and other sensors in order to acquire accurate relative positioning information. The

work done in [14] describes a closely coupled GPS/INS solution for relative positioning.

Similarly, the work in [4] describes the fusion of GPS and Ultra-wideband radios for car-

rier phase ambiguity resolution in RTK positioning. In the work explained in [22], a fusion

system involving both radar and GPS measurements is developed for a marine navigation

and anti-collision system. That work was applied entirely for marine navigation using Au-

tomatic Radar Plotting Aids (ARPA) and Automatic Identification System (AIS) which are

commonly used in marine navigational systems. In contrast to this example, the carrier

phase GPS and radar positioning algorithms detailed in this thesis are developed for ground

vehicle applications. Also, the system implemented in this work utilizes low cost sensors,

and the proposed fusion algorithm is a more straightforward integration of the GPS and

radar measurements than the system seen in [22]. Furthermore, the radar measurements

will be used to increase the update rate of the position solution and the GPS algorithms

are formulated to utilize the L1 measurement or both the L1 and L2 measurements. The

results for the single frequency and dual frequency solutions will be compared and shown in

Chapter 2.

Autonomous following often relies on line of site to the lead vehicle due to the following

vehicle using either vision with camera, lidar, radar, or a combination of the three [6].

These commonly used methods are exploited rather than GPS because of the occasional

inconsistency and inaccuracy of standalone GPS measurements. However, GPS does allow

for navigation in areas without clear line of sight, and the accuracy can be increased by

utilizing the carrier phase relative position which will be shown later in this thesis.

1.3 Contributions

Though there have been many ways of incorporating multiple sensor measurements to-

gether to produce an accurate relative positioning solution, this thesis introduces a novel way
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of integrating radar measurements with GPS positioning solutions. The major contributions

to this field of research in this thesis are:

• Experimentally analyzing the drift in the radar’s position solution when the lead vehicle

is out of the radar’s vision to show that the GPS position solution can be used to

improve the position estimate

• Improving target identification and selection by integrating high precision differenced

carrier phase measurements with the radar measurements

• Integrating range, range rate, and bearing measurements of a low cost radar with

a GPS positioning solution to increase robustness and confidence in the navigation

solution

• Testing the effects of multiple vehicle configurations and environments to analyze the

performance of the integrated GPS/Radar algorithm

1.4 Thesis Outline

To begin, this thesis discusses the GPS signal structure and the errors that are intrinsic

to it. Then, various differential positioning methods are described including the techniques

to mitigate the common errors between GPS receivers. These techniques are compared, as

well as visualized through experimental results in order to compare the accuracy of each

method. The differential positioning algorithms are discussed in greater detail along with

the derivation of how the relative position vector is determined.

Next, the basic radar measurements are discussed in Chapter 3 along with the channel

architecture of the specific radar used in this work. The problem of target selection for

radar tracking is discussed along with many issues that complicate the problem. A tracking

algorithm for the radar is described in great detail. Experimental results are then shown

displaying the algorithms tracking performance.
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The GPS positioning solution is integrated with the radar in a multi-sensor fusion

architecture, and experimental results are shown in Chapter 4. Finally, conclusions on the

system’s performance are also discussed along with some potential future works in this area

of research in Chapter 5.
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Chapter 2

Basics of GPS Navigation and Differential Positioning Techniques

2.1 GPS Signal

Before commercial navigation utilized it, the Global Positioning System (GPS) was

developed as a satellite based navigation system for the military. It was designed to provide

accurate positions, velocities, and time (PVT) for any user on the planet. Initially, there

were 24 satellites or space vehicles (SVs) in varying orbit planes. Now, the total number

of SVs has grown to 32. Each space vehicle broadcast signals on various L band carrier

frequencies. The main two frequencies are the L1 and L2 signals. The L1 signal has a center

frequency of 1575.42 MHz, and the L2 signal’s center frequency is 1227.60 MHz. The L5

carrier frequency was introduced in March of 2009 and has a center frequency of 1176.45

MHz. The L5 signal is utilized in some systems, but currently, the primary signals used are

the L1 and L2 signals.

The broadcast GPS signals are generated with several codes modulated onto their carrier

signals. This specific form of modulation is known as binary phase shift keying (BPSK). Each

period ranging code modulated onto the carrier signal is unique to each space vehicle. The

codes are binary sequences known as pseudo-random noise (PRN) sequences. Any in-phase

copy of the PRN codes have a high auto-correlation with itself but not with any other SV.

The PRN codes have unique numbers for each of the satellites ranging from 1-32. For further

details on the history of satellite constellations and the chosen architecture, see [15]. There

are two parts of the code signal. The first is known as the C/A code (Coarse/Acquisition)

which is accessible for civilian use and is another name for the PRN code. The other code

is specifically designed for military use only and called precision codes or P(Y) code (also

known as “Protected code” because it is encrypted).
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Every C/A code is a unique sequence comprised of 1023 bits, also called chips which

repeat every millisecond. Each C/A code chip has a duration of about 1 microsecond. The

chipping rate, the rate of the C/A code chips, is 1.023 MHz (or megachips/second). The

coarse/acquisition code is properly named because it is coarse compared to the precision

codes. The P code is a unique section of a very long (on the order of 104 chips) PRN

sequence. The chipping rate is 10.23 MHz which is ten times the chipping rate of the C/A

code. The P-codes repeat once a week. Without the encryption key, there is not much

use for the P(Y) code. Although, some “codeless” techniques have been developed to allow

civilians to track the P(Y) carrier phase without the key.

A third component of the GPS signal is the navigation message. The navigation message

is a binary-coded message composed of data including the health status of the satellite,

ephemeris (satellite orbit information), clock bias parameters, and almanac data on the

satellites. The navigation message bit has a duration of about twenty milliseconds and is

transmitted at 50 bits per second. The entire navigation message frame, which contains the

satellite ephemeris, clock parameters, and a
1

25

th

of the almanac is broadcast every thirty

seconds. The almanac data, because it contains so much data, is spread over 25 frames and

takes 12.5 minutes for the entire message to be received.

The receiver’s position is calculated by multiplying the time-of-flight of the signal from

the satellite to the receiver by the speed of light resulting in the estimated range between

that specific satellite and the receiver. The time-of-flight is found by subtracting the signal’s

time of arrival by the transmit time of the signal. The position of the receiver is then

calculated then using a trilateration method. However, a GPS receiver requires a minimum

of four satellite signals to estimate its position. Four satellites are necessary because the

receiver’s clock bias (i.e. clock receiver time relative to satellite time) is nonzero and must

be estimated along with the receiver’s position in the x, y, and z directions on Earth. The

receiver’s clock is not perfectly synchronized with the satellites, which results in an offset in

the receiver clock. The offset is referred to here as a clock bias.
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2.1.1 GPS Errors

Many different sources of error degrade the GPS signal which results in inaccurate

range measurements. The receiver estimates the distance that the GPS signal traveled

from the satellite, but this is not the actual range. This range estimate is known as the

pseudorange, which contains many errors. Some of the major errors are included in the

following: atmospheric errors that occur as the GPS signal passes through the ionosphere

and troposphere, receiver and satellite clock errors, multipath errors occurring when the

signal bounces buildings, attenuation as the signal passes through trees, and ephemeris

errors.

The largest effect of these errors is due to the degradation of the signal that occurs

as it propagates through the ionosphere and troposphere. The magnitude of this error is

dependent on the elevation of the particular satellite because the more atmosphere the signal

travels through between the satellite and the receiver, the greater the error. Therefore, the

GPS signals from lower elevation SVs will travel through more atmosphere than a signal

coming from a SV near the zenith.

The ionosphere is a region of ionized gases that are caused by the sun’s radiation, and

the ionosphere’s state is determined predominately by the solar activity in the atmosphere.

The ionized gases in the ionosphere cause a phase advance on the carrier signal which extends

the pseudorange. The advance is directly proportional to the number of electrons the signal

passes through. A group delay is also produced on the data modulated onto the carrier

signal. The ionosphere activity widely varies depending on whether it is day or night, season

of the year, and the solar activity for that specific region and time. Many different models

have been formulated over the years to estimate the effects of the ionosphere on the signal

in specific conditions.

The troposphere is a lower part of Earth’s atmosphere. Tropospheric errors are caused

by the refraction of the signal induced by the humidity in the troposphere. The propagation
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speed of GPS signals in the troposphere is lower than in free space. Therefore, the pseudo-

range to the satellite appears longer. Most of the ionosphere delays can be mitigated using

a dual-frequency receiver as seen in the work done in [12].

Another source of error in the GPS signal is the noise, bias, and drift in the SV’s clock

transmitted to the receiver. Whether the clock is fast or slow will determine whether the

pseudorange is shorter or longer than the true range. The navigation data contains clock

correction data that can be used to reduce these errors. The GPS receivers also possess

their own clock errors that affect the pseudoranges, which must be estimated along with the

receiver’s position.

Multipath errors are another form of error in the GPS signal. These errors occur when

the signal reflects off of nearby objects such as buildings or trees. Therefore, multipath

errors are most commonly experienced in cities next to tall buildings. Because the signal

must travel a longer path to the receiver, multipath errors increase the pseudorange the

receiver estimates. The magnitude of the error can range from a few centimeters to several

meters.

There can also be errors in the ephemeris data provided by the satellites which result

in errors in the calculated satellite positions. Ground observation stations around the world

monitor and estimate the trajectories of the satellites. These estimates are produced at the

ground stations and sent to the satellites which are then transmitted down in the ephemeris

data. Estimates of the SV positions and velocities in the near future are possible because of

this process. The ephemeris data is refreshed every two hours at the ground stations. So,

the errors induced by the ephemeris data will increase with time following the last ephemeris

update.

A typical error budget for the GPS signal is shown in Table 2.1 and found in [18].

The user equivalent range error (UERE) is usually about 1% of the signal’s wavelength as

shown in [15]. The carrier signal’s wavelength on the L1 frequency is about 19.03 centimeters

which results in an error of roughly 2 millimeters. The wavelength of the code is much larger
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at 293.1 meters which results in an error of 2.93 meters. The are pseudorange differential

techniques, but because the error in the carrier is significantly smaller than the code error,

the differential techniques that take advantage of the carrier signal can result in much more

accurate solutions. These differential techniques incorporating the code and carrier are

discussed in further detail later in this chapter. The atmosphere has a much greater effect on

the L1 signal than the L2 signal because the L1 signal has a higher frequency. To determine

the approximate position accuracy that the user can expect, the UERE must be multiplied

by the dilution of precision (DOP). The DOP is a unitless parameter that provides a simple

characterization of the satellite geometry relative to the user. Further discussion of the DOP

can be found in Appendix A along with some further detail regarding GPS timing.

Table 2.1: GPS Error Model and User Equivalent Range Error (UERE) [18]

.

Error Source C/A Range Error (m) P(Y) Range Error (m)

Ephemeris data 2.1 2.1
Satellite Clock 2.1 2.1
Ionosphere 4.0 1.2
Troposphere 0.7 0.7
Multipath 1.4 1.4
Receiver measurement 0.5 0.5
UERE 5.3 3.6

2.1.2 GPS Measurements

As stated previously, GPS provides two types of measurements. These measurements

are known as the code phase and carrier phase measurements. In order to visualize the errors

involved in these measurements and how they are mitigated through differencing, Equation

(2.1) and Equation (2.2) are shown below.

ρ = r + c(δtr − δts) + I + T +M + ερ (2.1)

φ = r + c(δtr − δts)− I + T + λN +M + εφ (2.2)
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The code phase measurement is also referred to as the pseudorange, ρ, which was mentioned

earlier in this chapter. The carrier phase measurement is designated as φ. For further

information and for the derivation of these equations, see [15]. Each of these equations

represent the pseudorange and carrier phase measurements between the receiver and a specific

satellite in the constellation.

The true range between the satellite and each receiver is denoted by r in Equations

(2.1-2.2). δtr and δts denote the receiver clock error and the satellite clock error, respec-

tively which are multiplied by the speed of light, c. Ionosphere errors, I, and troposphere

errors, T , are also accounted for in this formulation. M denotes the multipath error that

affects the signal. ε represents the random noise on both signals. The random noise on the

carrier phase measurement is 1% as mentioned previously and therefore much smaller than

that on the pseduorange measurement as shown in Equations (2.1-2.2). The wavelength, λ,

of the L1 signal is approximately 19.03 centimeters, and the L2 signal’s wavelength is ap-

proximately 24.42 centimeters. The integer ambiguity is denoted as N and is the unknown

number of cycles between the receiver and satellite that when resolved correctly allows for

highly accurate solutions in carrier phase positioning. The pseudorange and carrier phase

measurements are both in units of meters.

2.2 Differential GPS Positioning Techniques

About a decade after the launch of the Global Positioning System, many differential po-

sitioning techniques were formulated to help mitigate common errors between GPS receivers

that were in close proximity to one another. Around 10 kilometers or less has been considered

close proximity for these applications. If the two receivers are close enough to one another,

the atmospheric effects on each receiver’s incoming signals will be very similar. Likewise,

the satellite clock and ephemeris errors of the two receivers are identical. Therefore, close

proximity is vital when performing differential techniques. Otherwise, the assumption that

these errors are similar or identical between receivers will be incorrect and cause decreasing
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accuracy in solutions. Not all errors are mitigated using differential techniques. Errors such

as multipath and receiver clock errors are not common between receivers and must still be

accounted for. With multiple receivers, a user can difference measurements between the

receivers and eliminate a significant amount of the errors inherent to the signal. This allows

for a more accurate relative positioning solution between users.

Several types of differential positioning methods are accessible, including Wide Area

Augmentation System (WAAS), Satellite Based Augmentation System (SBAS), a Ground

Based Augmentation System (GBAS), Differential GPS (DGPS), and Real-Time Kinematic

(RTK) positioning.

The SBAS uses thoroughly surveyed base stations around the world to upload ephemeris,

clock, and atmospheric corrections to geostationary (GEO) satellites, which then relay the

information to the user. These GEO satellites are separate from GPS SVs. The WAAS

is a type of SBAS and was declared operational by the Federal Aviation Administration

(FAA) in 2003. The WAAS is accessible to civilians and broadcasts corrections used in

North America from geostationary satellites in the form of navigation messages modulated

on GPS-like signals on the L1 frequency. The expected position accuracy of the WAAS

solution is less than ten meters. Higher accuracy may be expected from the GBAS solution

because the GBAS local ground stations have better corrections that more closely correlate

with the errors of that specific region.

The RTK method was initially designed for surveying but has found many various

applications in recent years. In the RTK method, the measurements of the reference receiver

are transmitted to the rover over a radio link, and because the RTK technique uses the carrier

phase with a smaller UERE than the pseudorange, a higher accuracy of position and velocity

can be obtained. However, when incorporating the carrier phase, the process becomes more

complicated. This complication comes from the necessity to resolve the integer ambiguities

which are defined as the number of integer cycles in the carrier phase between the receiver and

every satellite (while the receiver has maintained a lock on the GPS carrier signal). If these
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integer ambiguities are successfully resolved, an extremely accurate solution of millimeter

level can be found. The RTK method assumes that the reference station (base) is static,

and the position of the base is well known. A version of RTK that has been developed for

scenarios of leader-follower configurations where both the rover and the base are moving is

known as Dynamic Base RTK (DRTK) positioning and is discussed later in this thesis.

2.3 Real-Time Kinematic (RTK) Positioning

In order to make surveys more efficient, the RTK mode was created to compute positions

of a rover receiver in real time. The RTK method requires the ability to calculate the

integer ambiguities while the rover is in motion. This is also known as on-the-fly (OTF)

initialization, which is accomplished in real time. The performance of an RTK system is

measured based on the initialization time and the accuracy of the solution. Because of their

highly accurate results, RTK solutions are often used as references to compare the accuracy

of other navigation systems.

The biggest challenge when performing carrier phase positioning is resolving the un-

known number of cycles between the receiver and every satellite, also known as integer

ambiguities. The ambiguities remain constant as long as the receiver maintains a lock on

the satellite signals. The ambiguities will be integers because the receiver measures the

fraction of the carrier signal’s phase. The ambiguities are usually denoted by N. With a

single GPS receiver, resolving ambiguities can be difficult and requires long periods of sur-

veyed static data to solve for them correctly. As stated before, when using two receivers in

close proximity, many common errors between the two receivers can be mitigated by taking

the difference of the observations from each receiver. Techniques such as Differential GPS

(DGPS) use a method of broadcasting measurements from one receiver to another over radio

link such that the user can mitigate the common errors between the two receivers. RTK

positioning techniques use these same receiver-linking methods and entails a well-surveyed

ground base station. The ground base station has a very well known global location, which
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is usually determined by taking a static data set of 24 hours or more. Then, the radio link is

setup between the base and the rover, and the base transmits observations to the rover. The

observations transmitted include single and double differenced measurements to mitigate the

common errors between the receivers, and a Kalman filter is used to initially estimate the

floating point ambiguities. The LAMBDA method is then used to fix the estimated inte-

ger ambiguities, and a least squares method is used to estimate the relative position vector

(RPV) between the two receivers.

2.4 Dynamic Base Real-Time Kinematic (DRTK) Positioning

One of the key characteristics of traditional RTK positioning is the requirement of a

static base station with a well known global position. In applications with a moving base

station receiver, the Dynamic Base RTK (DRTK) system can be utilized. Because of the

dynamic nature of the base station, the global position accuracy is lost. However, the

relative positioning between the two receivers retains the RTK method’s centimeter-level

accuracy. The DRTK technique operates similarly to the RTK method in mitigating the

common mode errors between the two receivers by differencing the measurements allowing

for the determination of a highly accurate RPV between the receivers. Similar to RTK

positioning, there are three stages in the DRTK algorithm. The first stage is estimation

of the floating point or decimal values of the carrier phase ambiguities using a Kalman

filter. Secondly, the LAMBDA method is used to determine the fixed integer ambiguities.

Lastly, the fixed integer ambiguities are subtracted from the carrier phase measurements,

and using least squares estimation, the RPV between the two receivers can be determined.

The DRTK algorithm is discussed in further detail in this chapter, and other examples of

DRTK applications and implementations can also be seen in [9], [14], and [25].
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2.5 Differenced Observation Measurements

This section discusses single differenced and double differenced observation measure-

ments and how differencing Equations (2.1) and (2.2) between two GPS receivers with the

same time-epochs allows for the mitigation of the common mode errors shared between the

receivers.

2.5.1 Single Differenced Observation Measurements

As mentioned previously in this chapter, atmospheric errors can be mitigated when

the pseudorange and carrier phase measurements of two receivers are differenced assuming

the receivers are within close proximity to one another. This may not always be the case

such as when strange weather occurs or during times of high solar radiation activity in

the atmosphere, but for the most part, this is a good assumption. The single differenced

pseudorange and carrier phase formulations are shown below in Equations (2.3-2.4)

∆ρr1−r2 = ρr1−r2 + cδtr1−r2 + ερr1−r2 (2.3)

∆φr1−r2 = φr1−r2 + cδtr1−r2 + λNr1−r2 + εφr1−r2 (2.4)

where ∆ designates the single differenced operation between receiver 1, r1, and receiver 2,

r2. It is assumed also that the multipath errors are negligible in this technique.

This formulation allows for the mitigation of the atmospheric errors and the satellite

clock errors. However, the receiver clock errors still remain. The integer ambiguity now

represents a relative, or differenced, integer ambiguity between the two receivers.

2.5.2 Double Differenced Observation Measurements

Although the single difference operation helps to eliminate atmospheric errors, satellite

clock errors, and multipath errors, there is still receiver clock errors that remain in Equations

(2.3-2.4). In order to mitigate the residual clock errors, a second differencing operation can
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be used. While the single differenced values were the differenced measurements between two

receivers, the double differenced measurements are the differences of the single differenced

measurements to a specific satellite. This particular satellite is determined as the SV that

will give the most reliable measurements and is known as the base satellite (usually the

satellite at the highest elevation). The base satellite’s single differenced measurements are

subtracted from all the other satellites’ single differenced measurements. This differencing

results in the double differenced measurements that no longer include the receiver clock

biases. The double differenced measurements formulation is shown below in Equations (2.5)

and (2.6)

∇∆ρs1−s2r1−r2 = ρs1−s2r1−r2 + εs1−s2ρr1−r2
(2.5)

∇∆φs1−s2r1−r2 = φs1−s2r1−r2 + λN s1−s2
r1−r2 + εs1−s2φr1−r2

(2.6)

where s1 and s2 are a regular satellite and the base satellite, respectively. The equations for-

mulated above are now in terms of relative position and relative residual noise measurements

between the two receivers. Note that residual noise in the measurements will increase with

both the single difference operation and double difference operation because the residual

noise is random and not common to both of the receivers.

2.6 Kalman Filter Floating Point Ambiguity Estimation

As stated previously in this chapter, the carrier phase ambiguities are initially estimated

as floating point or decimal values using a Kalman filter. The state vector used in the Kalman

filter is shown below in Equation (2.7)

x =

[
N1
r1−r2L1

· · ·Nm
r1−r2L1

N1
r1−r2L2

· · ·Nm
r1−r2L2

]T
(2.7)
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where m is the number of satellites. This configuration allows for the estimates of single

differenced ambiguities on both the L1 and L2 frequencies assuming dual frequency mea-

surements are available. Therefore, the state vector, x, is a column vector that is twice the

length of the number of satellites being used. In a single-frequency configuration (i.e. L1

measurements only), the state vector would be of length m.

2.6.1 Measurement Model

The required configuration of the measurement model for the Kalman filter is of the

form z = Hx. Although this is not a trivial task, it is possible to obtain this form by

combining Equations (2.3) and (2.4). The single differenced pseudorange and carrier phase

measurements are a function of two unknown terms and the stochastic noise term. The

combination is rewritten in matrix form and shown in Equation (2.8) below.

∆ρsr1−r2

∆φsr1−r2

 =

usr1x usr1y usr1z 1

usr1x usr1y usr1z 1




rsr1x−r2x

rsr1y−r2y

rsr1z−r2z

cδtr1−r2


+

0

λ

N s
r1−r2 (2.8)

For further information, derivation, and application of the Kalman filter see [5]. The partic-

ular satellite in Equation (2.8) above, is denoted by superscript s, and rr1−r2 designates the

relative range term between the receivers composed of the x, y, and z components in the

Earth-Centered Earth-Fixed (ECEF) coordinate frame. These relative range terms must be

removed from the equation in order for the Kalman filter to estimate the ambiguities. The

geometry matrix, G, is shown below in Equation (2.9) and consists of the unit vectors from

the receiver to the satellite and a column of ones designating the clock bias terms.
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G =


us1r1x us1r1y us1r1z 1

...
...

...
...

usmr1x usmr1y usmr1z 1

 (2.9)

The derivation of the vector product of the RPV is shown below in Equation (2.10).

rsr1−r2 =

[
usr1x usr1y usr1z

]
rs1x

rs1y

rs1z

−
[
usr2x usr2y usr2z

]
rs2x

rs2y

rs2z

 (2.10)

The distance from each of the receivers to a certain satellite is significantly larger than the

distance from one receiver to the other. Therefore, the unit vectors to each satellite from

receiver 2 can be assumed to be the same as the unit vectors from receiver 1 shown in

Equation (2.11). [
usr1x usr1y usr1z

]
≈
[
usr2x usr2y usr2z

]
(2.11)

The derivation can now be redefined by Equation (2.12).

rsr1−r2 =

[
usr1x usr1y usr1z

]
rsr1x − r

s
r2x

rsr1y − r
s
r2y

rsr1z − r
s
r2z

 (2.12)

The single differenced carrier phase ambiguity, N s
r1−r2 , in Equation (2.8) must be isolated

from the single differenced pseudorange and carrier phase range observations in order for it to

be estimated. To accomplish this, each term in the Equation (2.8) matrix must be multiplied

by the left null space of the geometry matrix. The left null space, L, is defined such that

LTG = 0 and is shown below in Equation (2.13).
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L = leftnull





u1···m
r1x

T
u1···m
r1y

T
u1···m
r1z

T
1

u1···m
r1x

T
u1···m
r1y

T
u1···m
r1z

T
1

u1···m
r1x

T
u1···m
r1y

T
u1···m
r1z

T
1

u1···m
r1x

T
u1···m
r1y

T
u1···m
r1z

T
1




(2.13)

When multiplying Equation (2.8) by Equation (2.13), the right hand side of the equation is

removed. This results in a cleaner formulation.

The measurement vector in the Kalman filter measurement model is denoted as z and

contains the single differenced pseduorange and carrier phase measurements. This vector

stays on the left hand side of the measurement equation and is multiplied by L and can be

seen below in Equation (2.14).

z = L

[
∆ρ1...m

r1−r2L1
∆ρ1...m

r1−r2L2
∆φ1...m

r1−r2L1
∆φ1...m

r1−r2L2

]T
(2.14)

The measurement vector shows the single differenced measurements for satellites 1 to m

on the L1 and L2 frequencies. The coefficient matrix for the state vector, x, in the Kalman

filter measurement model is denoted by H and is shown below in Equation (2.15)

H = L


02mxm 02mxm

λL1Imxm 0mxm

0mxm λL2Imxm

 (2.15)

where λL1 and λL2 represent the wavelengths for the L1 and L2 frequencies, respectively.

The measurement model now matches the z = Hx form of the Kalman filter. Next, the

Kalman filter measurement update is implemented as shown in Equations (2.16-2.18) below.

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1 (2.16)

P+
k = (I −KkHk)P

−
k (2.17)
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x̂+
k = x̂−k +Kk(zk −Hkx̂

−
k ) (2.18)

Here, K denotes the Kalman gain, P denotes the error covariance matrix, H is the measure-

ment matrix, and R represents the measurement uncertainty matrix. The state vector and

the error covariance matrix are updated using the Kalman gain, the measurement matrix,

and the previous error covariance and estimates. The initialization of the error covariance

matrix and state vector is discussed in a later section along with the measurement uncertainty

calculation.

2.6.2 Propagation Model

The Kalman filter time update equations propagate the state estimates, x, and error

covariance matrix, P . The equations describing the Kalman filter time update operation are

shown below in Equations (2.19-2.20).

x̂−k+1 = Φkx̂
+
k (2.19)

P−k+1 = ΦkP
+
k ΦT

k +Q (2.20)

The process noise matrix is denoted by Q and the discrete state transition matrix is rep-

resented by Φ. If the GPS receiver maintains a lock on the signal on a satellite between

measurement epochs, the carrier phase ambiguity will remain constant. In this case, the

state transition matrix would be the identity matrix with a size equal to the number of

single differenced ambiguity estimates, and the process noise matrix would be equal to zero.

However, in order to keep the error covariance from resulting in a zero gain matrix, Q is set

to 1x10−6 times the identity matrix with equal dimensions to the number of single differenced

ambiguity estimates.
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2.6.3 Initializing and Implementing Filter

Initialization of the state vector, x, is done using single differenced pseudorange and

carrier phase measurements from each satellite in view. The initial estimate of the single

differenced ambiguities, shown below in Equation (2.21), is equal to the difference in the

single differenced pseudorange and single differenced carrier phase measurement.

x̂ =



(∆ρ1
r1−r2L1

−∆φ1
r1−r2L1

)/λL1

...

(∆ρmr1−r2L1
−∆φmr1−r2L1

)/λL1

(∆ρ1
r1−r2L2

−∆φ1
r1−r2L2

)/λL2

...

(∆ρmr1−r2L2
−∆φmr1−r2L2

)/λL2


(2.21)

The estimates are divided by the signal’s wavelength, λ, to convert them into units of cycles.

The error covariance matrix, P , is initialized as
1

2
times the identity matrix that is

twice the size of the number of visible satellites or 2m x 2m. The measurement uncertainty,

R, is estimated after each measurement update based on the expected variance which is

discussed in [18]. GPS observation measurement variance is a function of the characteristics

of the receiver and the carrier to noise ratio, C/N0, of the incoming signal. The anticipated

pseudorange and carrier phase measurement variances are given by Equations (2.22-2.25).

σ2
ρ = σ2

ρatm + σ2
DLL (2.22)

σDLL = λC

√
4d2Bnρ

C/N0

(
2(1− d) +

4d

TC/N0

)
(2.23)

σ2
φ = σ2

φatm + σ2
PLL (2.24)

σPLL =
λ

2π

√
Bnφ

C/N0

(
1 +

1

TC/N0

)
(2.25)
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The values provided in Table 2.2 were used to calculate the above variances and are

typical values of GPS receiver characteristics found in [12] and [13]. Equation (2.22) and

Equation (2.24) show the calculation for the individual pseudorange and carrier phase mea-

surement variances, respectively. However, it is a combination of the two measurements that

are observables in the filter such that R, the measurement uncertainty matrix, is a function

of the measurement noise on receiver 1 and receiver 2.

Table 2.2: Pseudorange and Carrier Phase Measurement Variance Parameters [12]

Parameter Description Value

σ2
ρatm Variance due to the atmospheric code delay 5.22 m
λC Code Chip Spacing 293.05 m
d Correlator Spacing 0.5 chips
Bnρ Code Loop Noise Bandwidth 2 Hz
T Prediction Integration Time 5 ms
σ2
φatm

Variance due to the atmospheric carrier delay 0.03 m
λL1 Carrier Signal Wavelength on L1 19.03 cm
λL2 Carrier Signal Wavelength on L2 24.42 cm
Bnφ Carrier Loop Noise Bandwidth 18 Hz

Assumptions made at this point include that atmospheric errors have been eliminated

in the single differencing of the measurements and that the measurements between receivers

are uncorrelated. These assumptions result in a measurement uncertainty matrix, R, that

is a diagonal matrix shown below in Equation (2.26).

R =

σ2
r1ρ

+ σ2
r2ρ

0

0 σ2
r1φ

+ σ2
r2φ

 (2.26)

The above representation for R is for one satellite. The actual dimensions of R is twice the

size of the number of visible satellites available.

Some modifications to the Kalman filter state vector and error covariance matrix dimen-

sions do occur for a couple different reasons. The first modification is caused by changing

satellite constellations. When a satellite that was being tracked by the receivers is lost, the
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ambiguity estimate corresponding to that satellite is removed from the state vector. Like-

wise, the corresponding row and column of the error covariance matrix is also removed. If

a new satellite comes into view (and is acquired by the receivers), an ambiguity estimate

is added to the state vector and the corresponding row and column are added to the error

covariance matrix. Initialization of the error covariance matrix and new ambiguity estimate

is performed the same as before. Another reason for a modification is if a cycle slip occurs.

A cycle slip happens when a receiver loses lock and reacquires lock with the same satellite in

between measurement updates. This can be troublesome because the carrier phase ambiguity

actually changes, which voids the previous estimate of the ambiguity because the ambiguity

is assumed to be constant. This would corrupt the RPV solution significantly. Therefore,

a cycle slip detection method is used with every new measurement before the update step.

To compute a time differenced ambiguity estimate, the single differenced pseudorange and

carrier phase measurements from the current and previous steps are used. This process is

shown below in Equation (2.27).

∆N s
k,k−1 = [(∆ρsk −∆φsk)− (∆ρsk−1 −∆φsk−1)]/λ (2.27)

A threshold for the cycle slip detection is compared with ∆N s
k,k−1. The threshold for

this thesis was selected as one cycle. If ∆N s
k,k−1 exceeds the threshold, then the algorithm

declares that the measurement experienced a cycle slip and the ambiguity estimate and

covariance are reset as if a new satellite has come into view.

2.7 Fixed Integer Ambiguity Estimation using the LAMBDA Method

As stated previously, the carrier phase ambiguity estimates are still floating point values.

Therefore, the second step of the RPV estimation is used to fix the ambiguity estimates into

integers. A transformation matrix must first be created in order to transform the single

differenced quantities into double differenced quantities. Recognizing that it is a linear
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process, a transformation matrix must be formulated. An example of a transformation

matrix for five common satellites is shown below in Equation (2.28).

C =



1 0 −1 0 0

0 1 −1 0 0

0 0 −1 1 0

1 0 −1 0 1


(2.28)

In this example, the third single differenced ambiguity estimate is selected as the base

estimate. The base is subtracted from the other single differenced ambiguity estimates

resulting in four double differenced ambiguities using Equation (2.29) below.

N̂∇∆ = CN̂∆ (2.29)

The transformation matrix is also applied to the covariance matrix as seen in Equation

(2.30).

PN̂∇∆
= CPN̂∆

CT (2.30)

The next step is to convert the floating point ambiguity estimates into fixed integer

ambiguities. The most obvious method would be simply rounding the floating point values

to integers. However, Kalman filter’s estimates of the error covariance can aid in a more

informed method. The Least Squares Ambiguity Decorrelation Adjustment or LAMBDA

method method begins by decorrelating the ambiguity estimates in a transformation that

results in a nearly diagonal error covariance matrix which is shown in [7]. This new covariance

matrix is used to estimate the integer ambiguities beginning with the ambiguity estimate

having the lowest variance. Once the integer ambiguities are estimated, the estimates are

transformed back into the initial “coordinate” frame.

Even though the LAMBDA method is considered the most capable carrier phase am-

biguity estimation technique, the method’s solution is not always guaranteed to be correct
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as seen in [11]. The most common way to determine the validity of the integer ambiguity

estimate is the ratio test. The ratio test takes the ratio of the top two candidates for the

integer ambiguities, N̆1 and N̆2, compares their deviations to the initially estimated floating

point carrier phase ambiguities, N̂ . The deviations, d, are shown in Equation (2.31).

di = (N̂ − N̆i)P
−1
N (N̂ − N̆i)

T (2.31)

If the ratio,
d1

d2

, is above a determined threshold, the ratio test takes the top candidate as

the correct integer ambiguity fix. The ratio threshold selected in this work for the ratio test

was three based on the findings in [23].

2.8 Relative Position Vector Estimation using Least Squares

Estimating the RPV between the GPS receivers is the final step in the algorithm and can

be performed now that the carrier phase integer ambiguities have been estimated. Note that

the RPV is estimated whether the ratio test is passed or not. The RPV estimate is denoted as

a high precision solution when the integer estimates are available or a low precision solution

when the floating point estimate must be used. The RPV solution procedure is the same no

matter the precision of the ambiguity estimates. The form of the RPV estimation algorithm

is derived from Equation (2.6) and Equation (2.12) and shown below in Equation (2.32).

∇∆φr1−r2 − λ∇∆Nr1−r2 = ∆ūr1 r̄r1−r2 + υr1−r2 (2.32)

It is important to note that the ∆ in the ∆ūr1 r̄r1−r2 term designates that the base

satellite unit vector has been subtracted out from the correct geometry matrix. Using the

least squares method, the RPV between the two GPS receivers is estimated as shown in

Equation (2.33).

r̄r1−r2 = (∆ūTr1∆ūr1)−1∆ūTr1(∇∆φr1−r2 − λ∇∆Nr1−r2) (2.33)
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For further information and examples on least-squares estimation, see the work in [8].

2.9 Single Frequency Implementation

The algorithms discussed in the previous sections incorporated both the L1 and L2

frequency measurements. However, these techniques can also be performed using single

frequency GPS receivers. One goal of this work is to utilize a single frequency DRTK

algorithm and to analyze its performance compared to the dual frequency algorithm. Single

frequency receivers and antennas are far cheaper than dual frequency hardware which can

be a great advantage in low-budget applications.

The single frequency algorithm uses the same multi-step process as the dual frequency

algorithm. The carrier phase ambiguities are estimated using the Kalman filter. However,

modifications must be made to the state vector, the measurement vector, the measurement

matrix, and the left null space matrix. These modification are made to only include the L1

information as seen in Equations (2.34 - 2.37).

x =

[
N s1
r1−r2L1

· · · N sm
r1−r2L1

]T
(2.34)

z = L

[
∆ρs1···smr1−r2L1

∆φs1···smr1−r2L1

]T
(2.35)

H = L

 0mxm

λL1Imxm

 (2.36)

L = leftnull


u1···m

r1x

T
u1···m
r1y

T
u1···m
r1z

T
1

u1···m
r1x

T
u1···m
r1y

T
u1···m
r1z

T
1


 (2.37)

Single frequency implementation can also be done using the L2 frequency carrier signal only.

The LAMBDA method is still used to find integer estimates of the double differenced

carrier phase ambiguities, and least squares is used to estimate RPV. Because the number of
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measurements has been reduced, the uncertainty in the ambiguity estimates increases, and

the chance of successfully fixing integers decreases.

2.10 Experimentation and Results

In order to analyze the performance of the single frequency algorithm compared to the

dual frequency algorithm, both static and dynamic GPS data was collected and processed

using the method described above. For both data collections, two Novatel ProPak V3 GPS

receivers were utilized. The static data set was collected using two GPS antennas attached

to the roof of the Woltosz Engineering Research Laboratory at Auburn University. The two

Novatel receivers were used previously to calculate RTK position solutions for each antenna

on the roof as a fixed baseline reference. The receivers reported measurements at 2 Hz on

both the L1 and L2 frequencies. Accuracy and availability of a high precision solution were

the parameters by which the performance of the algorithms were evaluated.

Both the single frequency and dual frequency DRTK algorithms’ accuracies were deter-

mined by comparing the estimates of the RPV to the difference in the RTK positions of the

two receivers used as the reference. The low precision solution was calculated at every epoch.

However, the high precision solution was only computed when three or more fixed integer

ambiguity estimates were available. The first data set that analyzed both the low precision

and high precision RPV is the static data set on the Woltosz Laboratory roof pictured in

Figure 2.1. Note that the background mapping was provided by GPS V isualizer.

Figure 2.1: Novatel Reported Position for Woltosz Laboratory Roof Antenna
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The antennas are spaced approximately 1.75 meters apart. The duration of the data

collection was approximately ten minutes. The high precision baseline error versus time for

both the single frequency and dual frequency DRTK algorithms can be seen in Figure 2.2.

Figure 2.2: High Precision Baseline Error for a Static Data Set with Single and Dual Fre-
quency Algorithms

It is clear that the errors between the single frequency and dual frequency solutions have

similar magnitudes of error throughout the data set. The low precision baseline error for

the single frequency and dual frequency algorithms is also provided in Figure 2.3. As seen

Figure 2.3: Low Precision Baseline Error for a Static Data Set with Single and Dual Fre-
quency Algorithms

29



before in Figure 2.2, both the single frequency and dual frequency high precision solutions

stay within one centimeter of the RTK reference solution for the duration of the data run.

The maximum error for the low precision solutions is approximately one meter. Although

this is not nearly as precise as the high precision solution, it is a great improvement from

the standalone GPS solution whose error is occasionally several meters.

The standard deviations and variances for each of the solutions were calculated as well

as the root mean squared error (RMSE) for each solution. All of these statistics can be

seen in Table 2.3 and Table 2.4 where std and var are the standard deviation and variance,

respectively.

Table 2.3: High Precision DRTK Solution Statistics for Static Data Set

Dual Frequency Single Frequency

std, σ (m) 0.00215 0.00273
var, σ2 (m2) 4.62250e−5 7.4529e−5

RSME (m) 0.00219 0.00288

Table 2.4: Low Precision DRTK Solution Statistics for Static Data Set

Dual Frequency Single Frequency

std, σ (m) 0.29853 0.22020
var, σ2 (m2) 0.08912 0.04848
RSME (m) 0.36737 0.46524

As expected, the variance of the single frequency solution was higher than variance of

the dual frequency solution. The low precision errors are usually higher than one order of

magnitude higher than the high precision errors. The errors are highly correlated with higher

variances which can be seen more clearly in the single frequency solution.

The primary difference between the single frequency and dual frequency algorithms is

how long it takes to converge to a high precision solution. This difference in solutions can

be quantified by calculating the time to first fix (TTFF) which is the time needed to fix

floating point ambiguities into integers. For this data set, the TTFF for the dual frequency
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was roughly 2 seconds which is 4 measurement updates, and the single frequency TTFF was

approximately 17 seconds which is 34 measurement updates.

Another data set was collected involving two vehicles in a dynamic convoying configu-

ration at the Auburn RV fields. The purpose of this data collection was to determine the

performance of the single frequency DRTK algorithm compared to the dual frequency al-

gorithm in a dynamic scenario. This comparison was conducted using the dual frequency

DRTK solution as the reference due to the high fidelity and accuracy of the dual frequency

solution seen in previous experiments. The Novatel GPS antennas were attached to the roof

of each vehicle along with the Novatel ProPak receiver. The path traveled for this data set

can be seen by the GPS reported positions shown in Figure 2.4. The background mapping

was made available by GPS V isualizer.

Figure 2.4: Novatel Reported Positions at RV fields

The azimuth and elevation of the 10 visible satellites for the data run can be seen in sky

plot shown in Figure 2.5. A radio link was setup to pass measurements from the lead vehicle

to the following vehicle to record the data on the computer in the following vehicle. The

comparison of the algorithm solutions for this dynamic data set is seen in Figure 2.6. It is

seen in the figure that the two vehicles were static for the first five minutes and for the last
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minute of the data run. Using the dual frequency high precision solution as the reference,

the RPV error between the two vehicles can be seen in Figure 2.7.

Figure 2.5: Azimuth and Elevation of Visible Satellites for a Dynamic Data Set

Figure 2.6: RPV for a Dynamic Data Set with Single and Dual Frequency Algorithms

It is is clear from the figures that the single frequency DRTK algorithm’s performance

is very similar to that of the dual frequency algorithm when the high precision solution

is available. The maximum baseline error of the single frequency high precision solution

compared to the dual frequency high precision solution is less than one centimeter for the

duration of the data run. Even the single frequency low precision solution is more precise

than the GPS reported baseline solution, which is the difference in the two GPS receiver
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position solutions. Although the GPS reported baseline solution is sub-meter accurate, it is

still significantly less accurate than the DRTK solutions.

Figure 2.7: Baseline Error for a Dynamic Data Set with Single and Dual Frequency Algo-
rithms

For this dynamic data run, the first fix for the dual frequency high precision solution

occurred after the first epoch. The single frequency high precision solution’s TTFF was

approximately 19.5 seconds. Although the TTFF of the single frequency high precision

solution is longer than the TTFF of the dual frequency solution, the accuracy is substantially

better than the reported baseline solution that the receiver reports as seen in Figure 2.7.

2.11 Conclusions

Dual frequency and single frequency DRTK algorithms were provided with both high

precision and low precision solutions in this chapter. These algorithms were tested to de-

termine the fidelity and accuracy of each of the solutions. Both the high precision and low

precision solutions for each of the algorithms performed better than the standalone GPS

reported baseline solution. For both the dual frequency and single frequency algorithms, the

high precision solution errors were primarily less than one centimeter. Because the DRTK
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algorithm’s residual errors are correlated with the RTK reference solution residual errors,

the performance of the solution may be optimistic.

Because the single frequency algorithm’s performance was comparable to the dual fre-

quency algorithm’s performance, the single frequency algorithm serves as an effective sup-

plement depending on the system requisites.The TTFF for the dual frequency was usually

just a couple epochs whereas the single frequency usually took 15-20 seconds to converge

to a fix solution. The time to convergence is longer than the dual frequency and is still a

limitation of the single frequency algorithm. Therefore, the TTFF proved to be the primary

difference between the single frequency and dual frequency solutions.

Therefore, with given time to fix the ambiguities to integers and a good GPS environ-

ment, the single frequency DRTK algorithm is a suitable replacement for the dual frequency

algorithm. However, in a poor GPS environment with little time to acquire a fixed solution,

the dual frequency DRTK algorithm should be considered for implementation to ensure an

accurate solution in a short period of time. Alternatively, a single frequency GPS system

could be integrated with another sensor in order to achieve the reliability and precision

required in vehicle to vehicle communication. One such sensor that can be utilized is a

radar. Radar measurements are often used in vehicle navigation and are discussed in the

next chapter.
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Chapter 3

Radar Navigation and Target Selection

Other than some execptions, most autonomous vehicle following depends on line of site

to the lead vehicle because many automated systems rely on vision with camera, lidar, radar,

or a combination of the three [6]. In Chapter 2, it was shown how GPS measurements can

be used to calculate highly accurate relative positioning information between two vehicles.

However, it is well known that GPS solutions are not always available and accurate due to

many of the possible errors in the GPS signal discussed in Chapter 2. Therefore, it would

be advantageous to utilize other sensors in the navigation system. In this chapter, radar

measurements and target selection methods are discussed along with experimentation and a

performance analysis of the algorithms. For a brief summary on the history and background

of Radio Detection and Ranging (radar), see [10]. In this thesis, the radar measurements

and how they are used is discussed at a high-level. There has been much research in the

lower-level schemes of radar navigation. However, these methods will not be addressed in

this thesis. During experimentation, the radar was mounted to the front of the following

vehicle in a fixed position. However, work has been done in the field of radar navigation

using rotating range sensors for radar-only localization [26].

3.1 Radar Measurements

There are many different types of radars that can be used in collision-avoidance, Adap-

tive Cruise Control (ACC), or other ground vehicle navigational applications. In this thesis,

a Delphi Electronically Scanning Radar (ESR) is used to provide range, range rate, and
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bearing measurements between the following vehicle and the lead vehicle. Some of the spec-

ifications for the radar used in this work can be seen in Table 3.1 where FOV designates

Field of View.

Table 3.1: Delphi ESR Specifications

Parameter Value

Max Range 174 (m)
Mid Range 60 (m)
Accuracy: Range 0.5 (m)
Accuracy: Range Rate 0.12 (m/s)
Accuracy: Angle 0.5 (◦)
Update Rate 50 (ms)
Long-Range FOV +/- 10 (◦)
Mid-Range FOV +/- 45 (◦)
Vertical FOV 4.2-4.75 (◦)
Tracking Targets 64

Various types of radar will report different measurement messages depending on the

specific model. These messages can include range, range rate, bearing angle, elevation angle,

track status, and more. In order to keep costs low, the Delphi ESR was utilized in this

work. This specific radar reports range, range rate, track status, and bearing angle. In

aerial vehicle navigation, the elevation angle, not provided by the Delphi ESR, would be an

important measurement to have available. However, because this work is being applied to

ground vehicle navigation, the elevation angle is not a required measurement.

The range, r, measurement represents the distance between the radar and an object

the radar is tracking in the path of the vehicle the radar is mounted to. The range rate,

ṙ, measurement, also referred to as the Doppler or radial velocity, represents the velocity

along a line extending from the radar to the tracked target. The bearing angle, θ, to the

radar target is a relative angle measured from the centerline of the following vehicle. The

range, range rate, and bearing measurements’ physical representation are shown in Figure

3.1. The track status message indicates whether a target is an invalid measurement, a new

measurement on a new channel, an updated measurement, or a merged measurement. The
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track status message helps to flag poor measurements, which makes it simpler to determine

which channels are reporting good measurements and eliminate the ones that are not.

Figure 3.1: Range, Range Rate, and Bearing Measurements’ Physical Representation in
Convoy

3.2 Target Selection

The number of message channels in the Delphi radar is 64, which is therefore the number

of targets it can track at a time as seen before in Table 3.1. This means that for every epoch,

there are 64 range, range rate, and bearing measurements corresponding to 64 individually

tracked targets. The process of determining which channel contains the set of measurements

of the desired target from the radar is known as target selection. Because there are 64

different sets of measurements to choose from, target selection is the most complex and

critical part of the radar navigation operation. In order to visualize the raw output from

the Delphi radar, Figure 3.2 shows an example of the reported range measurements for all

64 channels in a given data set.

The raw output for the range rate and bearing measurements are similarly complicated

and scattered. For this specific data run, the two vehicles were static approximately nine

meters apart for approximately five minutes before moving. The GPS RPV solution of this

data is represented by the black line in Figure 3.2.

One difficulty that occurs when using a radar to track a target is “channel jumping.”

“Channel jumping” occurs when the desired target leaves the FOV of the following vehicle,
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Figure 3.2: Reported Range Measurements on All 64 Channels of Delphi ESR

and there is no correct measurement reported by the radar because the radar cannot detect

the desired target. Once the desired target comes back into view, the channel on which the

desired target’s measurements are reported has changed from the previous channel. The

channel chosen out of all 64 channels is arbitrary, and therefore, the user cannot know which

channel has the correct measurements once the desired target returns to the FOV. This

scenario can occur when the lead vehicle enters these blind zones (outside of the FOV of the

following vehicle) in tight turns or even in wide turns when the lead vehicle is far in front of

the following vehicle.

The radar can also switch which channel the desired target’s measurements are reported

when the radar begins tracking a different part of the lead vehicle such as the opposite side

of the bumper it was previously tracking. Channel jumps can also occur when other vehicles

come into view or cut in between the convoying vehicles. This is a common scenario in

Adaptive Cruise Control (ACC) applications where multi-vehicle target selection is impor-

tant. There are many different techniques used in target selection such as lateral motion

analysis, longitudinal motion analysis, in-lane target detection, and other target trajectory
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estimation techniques. Many of these methods will not be addressed in this thesis but are

provided in [16].

3.3 Target and Measurement Models

There are many different combinations of radar measurements to utilize in the first stage

of tracking a target. In this thesis, an algorithm is developed to determine a relative position

solution using radar measurements that handles the previously discussed drawbacks of radar

navigation. Note that if additional information is available from other external measure-

ments, such as an on-board Inertial Measurement Unit (IMU), these measurements can be

used to better predict the change in target state. However, this would require measurements

from both the lead and following vehicles. This algorithm uses the range and bearing angle

measurements as measurement updates. The state vector of the radar tracker is defined

below in Equation (3.1)

x =


r

ṙ

θ

 (3.1)

where the range is denoted by r, the range rate is designated by ṙ, and bearing angle is

represented by θ.

With the assumption of a nearly constant velocity model, the target state prediction

can be represented by Equation (3.2)

xk+1 = Fxk + uk (3.2)
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where F is a discrete transition matrix given by Equation (3.3) and uk is a zero-mean white

Gaussian process noise vector.

F =


1 T 0

0 1 0

0 0 1

 (3.3)

The sampling time is denoted by T , which is 0.05 seconds in this work. The covariance

matrix of the process noise vector is given by Equation (3.4)

Qu =


qr 0 0

0 qr 0

0 0 qθ

 (3.4)

where qr and qθ are process noise intensity parameters for the range and bearing dimensions,

respectively. In this thesis, qr and qθ are 0.1m2 and 0.1deg2.

The target oriented measurement is modeled as Equation (3.5) where H is defined by

Equation (3.6) and wk is zero-mean white Gaussian with covariance defined by Equation

(3.7).

zk = Hxk + wk (3.5)

H =

1 0 0

0 0 1

 (3.6)

R =

σ2
r 0

0 σ2
θ

 (3.7)

The target oriented measurement consists of noise corrupted range and bearing. It is im-

portant to note that there is a possibility of false measurements reported from the radar.

Therefore, it is important to effectively determine which measurements should be used in

the navigation solution.
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3.4 Probabilistic Data Association Filter

One challenge when tracking a desired target using a radar is estimating a navigation

solutoin with measurement origin uncertainty meaning that the radar reports a range mea-

surement on a certain channel, but the user does not know what object (origin of that

measurement) the radar is tracking. One way of dealing with uncertainty in the estimation

algorithm is by using a probabilistic data association filter (PDAF). The PDAF approxi-

mates a mixture of Gaussian probability density functions making up the posterior state

probability function. The approximation is a single Gaussian density having the same mean

and covariance as the mixture. Therefore, after each scan, the estimate is built upon a Gaus-

sian predicted density and then converted to a Gaussian mixture posterior, which is then

converted back to a single Gaussian for the next scan. The PDAF is discussed in greater

detail in this chapter, but for further background and examples of the PDAF algorithm,

see [1–3]. For other radar tracking algorithms and methods, see [20,21].

The operation of the PDAF using the range, range rate, and bearing measurements can

be summarized in six steps. The first step in the algorithm is the prediction of the target

state at scan k from the previous scan k − 1, which can be seen in Equation (3.8).

x̂k = Fx̂k−1 (3.8)

The predicted measurement, z, is then calculated as seen in Equation (3.9) along with the

innovation covariance, S, shown in Equation (3.10)

ẑk = Hx̂k (3.9)

Sk = HPkH
T +R (3.10)

41



where the state error covariance matrix, Pk, is defined by Equation (3.11).

Pk = FPk−1F
T +Qu (3.11)

The third stage of the operation is defining a validation “gate” centered around the

predicted measurement. To visualize an instance when several validated measurements occur,

Figure 3.3 shows the two-dimensional validation region for a single target represented by an

ellipse in the measurement space (r, θ) [1]. The measurements are designated by Zi, and

the predicted measurement at which the ellipse is centered is denoted by Ẑ1. The ellipse’s

parameters are determined by the covariance matrix, S, of the innovation. The shape is

elliptical based on the assumption that the error in the predicted measurement is Gaussian.

For testing purposes, the validation region can also be manually set to a constant or varying

set of parameters.

Figure 3.3: Validation Region of a Single Target with Several Validated Measurements [1]

The validation region is configured to select the measurements associated probabilisti-

cally to the target and satisfies Equation (3.12)

(zk − ẑk)TS−1
k (zk − ẑk) ≤ γ (3.12)

where γ determines the size of the gate. Consider a set of nk measurements where mk of the

measurements fall within the validation region. The set form innovations are described by

Equation (3.13).
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z̃jk = z
ij
k − ẑk, j = 1, ...,mk (3.13)

The next step in the algorithm is calculating association probabilities βjk, which represent

the posterior probability that the measurement z
ij
k originates from the target and is defined

by Equation (3.14)

βjk =


c

1√
|2πSk|

e−[z̃jk]TS−1
k z̃jk , j = 1, ...,mk

c
(1− PDPG)mk

PDVG
, j = 0

(3.14)

where β0
k is the posterior probability that all measurements at scan k originated from the

previous clutter. The constant c ensures that Σmk
j=0β

j
k = 1 (i.e., the sum of all probalilities

is 100%). The probability that the target-originated measurement falls inside the validation

region is denoted by PG, which is a scalar quantity. The probability of detection is denoted

by the scalar PD. The volume of the validation gate is defined below by Equation (3.15)

VG = γnz/2cnz |Sk| (3.15)

where cnz is the volume of the unit hypersphere of dimension nz, the dimension of the

measurement zk. In this thesis, nz = 2 and cnz = π based on the work done in [21]. In a

situation with no uncertainty, the probability coefficients would be unity. For this work, PD

was 0.9 and PG was 0.95. These values are similar to those used in [1] and were selected

after thorough hand-tuning of the algorithm parameters.

The next step in the algorithm is the state estimate update using the Kalman gain as

seen in Equation (3.16)

x̂k = x̂k−1 +Kkz̃k (3.16)

where Kk is the Kalman gain and is defined by Equation (3.17).
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Kk = PkH
TS−1

k (3.17)

The aggregate innovation is defined by Equation (3.18), which acts as a weighted average.

z̃k =

mk∑
j=1

βjkz̃
j
k (3.18)

The next step in the algorithm is the computation of the covariance associated with the

updated state as seen in Equation (3.19)

Pk = Pk−1 − (1− β0
k)KkSkK

T
k + P̃k (3.19)

where the measurement dependent term, known as the “spread of the innovations,” is denoted

as P̃k and defined by Equation (3.20).

P̃k = Kk

[ mk∑
j=1

βjkz̃
j
k[z̃

j
k]
T − z̃kz̃Tk

]
KT
k (3.20)

All of the previous steps relate the operation of the PDAF at a specific scan. The algorithm

proceeds in a recursive manner with the same steps shown above as new measurements are

received.

3.5 Experimentation and Results

In order to determine the performance of the PDAF algorithm, multiple data sets were

collected and analyzed with different vehicle configurations. The location for the first data

collection was at the National Center for Asphalt Technology (NCAT) test track in Auburn,

Alabama. The test track, pictured in Figure 3.4, is 1.7 miles long allowing for a variety of

spacing for the vehicles in convoying scenarios.

The test vehicles used in this data collection were two Peterbilt 579 trucks with trailers as

seen in Figure 3.5. The following truck was equipped with a Delphi ESR which was mounted
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Figure 3.4: NCAT’s Test Track: Location of Data Collection

on the lower front bumper. Both the lead and following truck were outfitted with Novatel

dual frequency GPS antennas and Novatel ProPak V3 GPS receivers. A radio link was setup

such that the front truck could transmit GPS measurements to the following truck where

the data was being recorded on a single computer. The GPS measurements were recorded

in order to use the high precision dual frequency DRTK solution as a reference to test the

radar algorithm’s performance. The GPS measurements were also recorded in order to use

the same data in the multi-sensor fusion analysis that is discussed in Chapter 4.

Figure 3.5: Test Vehicle: Peterbilt 579 Truck and Trailer
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During data collection, the drivers of the test vehicles tried to maintain a constant

spacing and velocity. The trucks were traveling at roughly 45 mph, a good speed to test the

radar’s ability to track targets and to ensure safety during testing. For each data run, the

two trucks were static with the following vehicle directly behind the lead vehicle in order to

initialize the radar and GPS systems.

Figure 3.6: Mounting Positions of Sensors on Test Vehicles

The mounting positions of the GPS antennas and radar are shown in Figure 3.6. The

two dimensions shown in Figure 3.6 sum to 71.37 feet and must be accounted for in order

to accurately compare the GPS and radar solutions. Note that because the user does not

know exactly what part of the rear bumper the radar is tracking, there may be discrepancies

between the GPS and radar range solutions. This effect may be more evident when the

vehicles are turning as the radar may be picking up a different part of the trailer on the lead

truck. Therefore, the level of accuracy and consistent readings seen in the GPS solutions in

Chapter 2 should not be expected from the radar’s PDAF algorithm solutions.

To visualize the “channel jumping” that occurs in the radar during the data runs, Figure

3.7 shows the radar channels that contain measurements falling within the validation region

in the probability association operation of the PDAF.

For all of the experimental data collections, the validation region was described by ±10

degrees in the bearing measurement and ±5 meters in the range measurement. These values
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Figure 3.7: Used Radar Channels for the Trucks on NCAT Data Run

were determined after hand-tuning all the parameters and analyzing the potential dynamics

that could occur inside the sample time of the measurements. In the data run, anywhere

from one to seven radar channels passed the validation test to be used in the filter. Figure

3.7 shows that channel 48 in particular was one of the most consistent channels at least for

the first half of the data run.

The trucks began the data set static roughly 10 meters apart for the first five minutes.

The range solution between the two trucks for the radar PDAF algorithm, Novatel GPS

reported baseline, and single frequency high precision DRTK solution are shown in Figure

3.8. It is evident from the figure that the single frequency high precision DRTK position

solution was available for a majority of the run but not for the entire data run. The potential

unavailability of the DRTK solution is one source of motivation for integrating the radar

with GPS in poor GPS environments. The standalone GPS reported baseline could also be

utilized when the high precision DRTK solution is unavailable. Further information on this

GPS/Radar fusion is discussed in the upcoming chapters along with experimental results

corresponding to the fusion system. In order to ensure that the channels that passed the

validation region were from a valid target, the PDAF algorithm only accepted measurements
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that passed the validation region on the same channel for five consecutive epochs. The

channels used in the PDAF algorithm can be seen in Figure 3.9.

Figure 3.8: Radar, GPS Reported Baseline, and Single Frequency High Precision DRTK
Range Solutions on Peterbilt Trucks at NCAT

Figure 3.9: Channels Used in PDAF Algorithm for NCAT Data Run

The GPS measurements from each vehicle were synchronized using GPS time, and the

radar measurements were synced with the GPS measurements using the computer’s recorded

time epochs. For this test, the sample rate of the Novatel GPS receivers was 10 Hz and the

sample rate for the Delphi radar was 20 Hz. Due to this difference in sample rate, the

GPS measurements were linearly interpolated in order to match the data rate of the radar
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measurements and allow for a direct comparison of measurements. The performance of

the radar PDAF algorithm solution can be compared to the single frequency high precision

DRTK solution by calculating the error between the two range solutions as seen in Figure

3.10.

Figure 3.10: Radar Error for Data Run Using High Precision DRTK Solution as Reference
with Trucks at NCAT

Figure 3.10 shows that for a majority of the data set the radar PDAF algorithm tracks

the desired target reasonably well compared to the high precision DRTK range solution.

The mean error for the data run is 0.3333 meters. The standard deviation of the error

for the data run is approximately 0.4982 meters, which is a little higher than what would

be desired for a convoying navigation solution. The highest points of error occurred while

the vehicles were turning because, as mentioned earlier in this chapter, the radar may be

tracking different parts of the lead vehicle’s rear bumper (which is 2.59 meters wide) in the

turns whereas the GPS measurements are measuring the GPS antenna positions that only

vary around the true position with measurement noise. To verify this, the GPS positions

of the lead and following trucks at the point in the run with the largest error are shown in

a Google Maps image in Figure 3.11. All of the large errors (greater than 2 meters) in the

data set were determined to have occurred in the turns using the same GPS position check.
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Figure 3.11: Lead and Following Truck Positions with largest radar PDAF range error

Another source of error could be the measured dimensions of the Peterbilt truck cabs and

trailers. Any errors in the measured cab or trailer dimensions of the trucks would directly

bias the GPS solution and result in an inaccurate comparison of the radar PDAF range

solution and the single frequency high precision DRTK range solution. Any of these errors

could have attributed to the difference between the radar PDAF algorithm range solution

and the high precision DRTK range solution. In this data collection, the lead truck was in

the FOV of the following truck radar for the entire run.

To determine the performance of the PDAF algorithm when the lead vehicle is no

longer being tracked, another data collection was completed involving a different vehicle

configuration. For this set of data, the two vehicles utilized were sedans including a modified

Infiniti G35 shown in Figure 3.12. The Infiniti G35 was used as the following vehicle and

was outfitted with the Delphi ESR mounted on the roof right under the Novatel Pinwheel

GPS antenna pictured in Figure 3.13.

The Delphi ESR was mounted on the roof of the Infiniti G35 in order to prevent dam-

aging the front bumper while mounting the radar. Because of the height of the vehicle the
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Figure 3.12: Infiniti G35 Test Vehicle Used for Data Collection

Figure 3.13: Following Vehicle Delphi
ESR and Novatel Pinwheel Antenna

Figure 3.14: Lead Vehicle Novatel Pin-
wheel Antenna

radar was mounted, it was angled down slightly to ensure that it was tracking the bumper of

the lead vehicle. The lead sedan’s Novatel Pinwheel GPS antenna was mounted on the back

of the trunk close to the bumper approximately where the radar would be tracking, which

is shown in Figure 3.14. These mounting locations were chosen to minimize the difference

in range solutions between the GPS and radar.

51



The location of the data collection was the RV fields off South Donahue Drive in Auburn,

AL which was shown previously in Figure 2.4 and partially seen behind the Infiniti G35 in

Figure 3.12. Figure 3.15 shows the radar channels used in the filter over the duration of the

data run. For the first five minutes of the data run, the two sedans were parked roughly nine

meters apart which is why there are primarily only two channels used in the data run as seen

in Figure 3.15. Fewer channels were used in this run than in the data run with the trucks at

NCAT because there were far fewer objects at the RV fields that the radar could have been

tracking than at the track. At the track, the radar had multiple tracking targets on the back

of the truck, which is much larger than the bumper of a sedan. After five minutes into the

data run, it is evident that the desired target’s radar channel changes sporadically until the

end of the run. These changes mostly occur when the vehicles are turning.

Figure 3.15: Used Radar Channels for the Sedans at RV Fields Data Run

In this data collection, there were instances when the lead vehicle left the following

vehicle’s FOV in sharp turns greater than 90 degrees. Some of these “blind zones” were very

short, lasting as brief as a single measurement, but some of them were as long as dozens of

measurements out of the FOV of the following vehicle. The radar PDAF algorithm was able

to overcome some of the brief “blind zones” by relying on the estimates until a validated
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measurement returned. However, in some of the larger “blind zones” the estimate drifted

without any validated measurement update until the solution estimate drifted so far that

no measurement could ever pass the validation gate, which was centered around the current

estimate. In Chapter 4, a method of resetting the PDAF estimate using the DRTK solution

will be discussed.

The standalone GPS reported baseline, single frequency high precision DRTK solution,

and radar PDAF solution for the data set can be seen in Figure 3.16. Obviously, the radar

PDAF algorithm estimate does not track well after about 470 seconds into the data run as

seen by Figure 3.17, which shows the radar PDAF estimate error over the duration of the

data run.

Figure 3.16: Radar, GPS Reported Baseline, and Single Frequency High Precision DRTK
Range Solutions Using Infiniti G35 Test Vehicle at RV Fields

The mean error of the radar solution is centimeter-level (mean) while the PDAF algo-

rithm is able to validate measurements. However, a very sharp turn about 380 seconds into

the run was taken by the lead vehicle and the following vehicle’s radar lost sight of it for

several iterations. The PDAF algorithm is able to overcome this brief outage seen in the

figure. Then, another “blind zone” occurs around 470 seconds into the run. However, this
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Figure 3.17: Radar Error for Data Run Using Single Frequency High Precision DRTK Solu-
tion as Reference with Infiniti G35 at RV Fields

“blind zone” is too large, and after this point in the run, the radar PDAF algorithm no

longer validates measurements, which is why the radar PDAF algorithm’s range solution in

Figure 3.16, shown in red, drifts off. Because the algorithm knows the solution is incorrect,

the system would cease reporting a solution in a real-time scenario after a whole second, or

20 epochs, without validated measurements.

It is clear in Figure 3.17 that the radar PDAF range estimate was tracking very well

compared to the single frequency high precision DRTK range solution until the point in the

run with the large “blind zone.” The error did jump a little during the first “blind zone” but

came back close to zero until approaching the large “blind zone” and drifting away. As the

radar estimate drifts in this turn, the validation region in the PDAF algorithm moves along

with the range estimate, away from the true value. A constant validation region would make

it more difficult to adapt to unpredictable situations. If based on estimate uncertainty, the

validation region can grow but can result in trusting incorrect target measurements.

These “blind zones” are a major issue in the range calculation. However, it is not

reasonable to expect the radar PDAF algorithm solution to be able to maintain an accurate
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estimate of the range between the vehicles if no measurements of the desired target are

being reported for an extended period of time. The drift in the range solution that causes

the algorithm to cease reporting a solution is induced by the algorithm holding on to the

last validated Doppler measurement and predicting the next states, seen in Equation (3.8),

by using the same value for ṙ until the completion of the run. One method was investigated

involving zeroing the Doppler value when no validated radar measurements were reported.

This method assumes that the lead vehicle will return into view approximately the same

distance from the following vehicle as it was when it left the radar’s FOV, and the validation

region would not move. This technique was tested and unsuccessful for these specific data

sets. Another approach to investigate would be adding parameters the lead vehicle’s motion

to the PDAF in order to better predict the relative position of the lead vehicle.

One other possible method would be to model ṙ as a Markov process instead of a

random walk where the estimate of the Doppler would eventually level off to a constant value.

Modeling this problem as a Markov process would prevent the estimate from continually

drifting and cause it to settle on a constant value. However, there is no guarantee the range

or Doppler between the vehicles will be the same when the desired target returns into view.

Therefore, it would be beneficial to implement a multi-sensor fusion system to increase the

reliability of the system. Various sensor fusion techniques are discussed in the next chapter

resulting in more stable solutions.

3.6 Conclusions

A probabilistic data association filter (PDAF) algorithm was implemented for radar

range estimation using the bearing and range rate measurements reported by the Delphi

Electronically Scanning Radar (ESR). The PDAF algorithm was tested with various data

sets to determine the accuracy and robustness of the relative position solution. The first

data set that was analyzed involving two Peterbilt 579 trucks driving on the NCAT test

track at a number of spacings that allowed for continuous line of sight for the radar. The
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radar PDAF algorithm was successful in tracking the desired target for the duration of the

run while providing an accurate range solution that was very similar to the single frequency

high precision DRTK solution.

The second data set used a different vehicle setup with sharper turns that resulted in

“blind zones” for the radar in which the lead vehicle was out of the FOV. Some of these

“blind zones” were overcome using the PDAF estimates, but the larger ones caused the

radar range estimates to drift away from truth such that the measurements tracking the

desired target were no longer inside the validation region within the PDAF algorithm. The

lack of validated measurements over a period of time caused the PDAF algorithm to stop

reporting range solutions. Therefore, it is important to determine a method of assisting

the PDAF algorithm estimation in these “blind zones” that occur when the lead vehicle is

outside of the following vehicle’s FOV. One option is implementing a trajectory prediction

algorithm that can use various characteristics about a known vehicle to track the vehicle in

the measurement clutter. An example of this work, which discusses multi-target tracking

and Adaptive Cruise Control (ACC) applications can be seen in [16]. However, in this thesis,

the method for solving the “blind zones” issue is by integrating another set of navigation

measurements into the system in order to assist the radar PDAF solution. In the next

chapter, the single frequency DRTK solution is integrated with the radar PDAF solution

in a multi-sensor fusion configuration in order to acquire a more robust and precise relative

positioning solution.
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Chapter 4

GPS and Radar Integration for Range Determination

Next in this thesis, GPS/Radar integration is discussed and various possible configura-

tions are evaluated to determine the best method of data fusion for relative positioning in

ground vehicle applications. GPS reported positions and Dynamic Base Real-Time Kine-

matic (DRTK) algorithm estimates are reported at the rate of the GPS receiver which is

typically less than 10 Hz. By utilizing the radar measurements in the range calculation, the

relative positions can be estimated anywhere from two to five times the rate of the standalone

GPS solution. This increase in update rate is vital when applying navigation solutions to

convoying scenarios where faster control loops will allow for closer spacing and increased

safety.

4.1 GPS/Radar Integration

Much research has been done in the area of multi-sensor fusion navigation systems

including systems that integrate GPS with various sensors. These sensors can include inertial

measurement units (IMU) with multi-axis gyroscopes and accelerometers, camera vision,

ultra-wideband radios, lidar, and others. For examples and further details on a multi-sensor

navigation algorithm using some of these sensors, see the work done in [17].

Because one of the main goals of this thesis is to develop and implement a low-cost

relative positioning navigation solution, the GPS solution is integrated with the Delphi

electronically scanning radar (ESR). The GPS solutions utilized in this work are the single

frequency high precision DRTK range solution and the standalone GPS reported baseline

such that this algorithm can operate on cheaper single frequency GPS hardware along with

the low-cost Delphi ESR.
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In this chapter, a few different methods of integrating GPS measurements and radar

measurements are discussed. The first method implements an algorithm that utilizes the

radar PDAF range solution when the desired target is being tracked (i.e., when the lead

vehicle is in view) and uses the single frequency DRTK RPV solution or the standalone GPS

reported baseline to update the PDAF when there is no valid radar solution. The second

algorithm relies on the single frequency DRTK range solution to provide the navigation

solution. If the DRTK solution is not available, then the radar PDAF solution aided by the

standalone GPS reported baseline. The third technique introduced in this chapter involves

a Kalman filter that fuses the DRTK and radar PDAF range solutions allowing for a higher

update rate and a more reliable range solution. Each of the algorithms have benefits and

limitations, and further discussion of each is discussed in the next sections.

4.2 GPS Aiding Radar PDAF

The first GPS/Radar integration method involves the radar PDAF relative positioning

algorithm discussed in Chapter 3 along with the single frequency DRTK algorithm discussed

in Chapter 2. This algorithm utilizes the radar PDAF range solution as long as the radar

reports measurements that fall within the validation region. This means that as long as the

lead vehicle is in the field of vision (FOV) of the following vehicle’s radar, the algorithm will

proceed with the PDAF solution. The state vector of the algorithm defined by Equation (4.1)

is shown again where the r, ṙ, and θ denote the range, range rate, and bearing, respectively.

x̂ =


r

ṙ

θ

 (4.1)

The block diagram of the GPS Aiding Radar Filter (GARF) algorithm’s operation can be

seen in Figure 4.1. The block diagram shows that when the radar PDAF algorithm does not

produce a measurement that falls within the validation region on consecutive iterations, the
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single frequency DRTK solution provides the measurement update to serve as that epoch’s

range solution and to reinitialize the PDAF state estimate for the next epoch. In this case,

the DRTK estimate of range, r̂DRTK replaces the first term in Equation (4.1). In the case

that the single frequency high precision DRTK solution is not available, the algorithm can

utilize the standalone GPS reported r̂GPS and ˆ̇rGPS to aid the radar PDAF algorithm.

Figure 4.1: Block Diagram for GARF Algorithm

In this process, the algorithm is effectively centering the validation region of the PDAF

algorithm around the single frequency high precision DRTK solution for the next set of

measurements entering the system. The radar reports the next set of measurements, and

the PDAF algorithm determines which measurements to validate based on the newly centered

validation region. If the lead vehicle has returned to the radar’s FOV, the desired target’s

measurement should be detected and fall inside the validation region. The radar PDAF

solution will then be used until the lead vehicle is again no longer in view of the following

vehicle and the single frequency high precision DRTK solution is needed to reinitialize the

estimate once again.

Note that the PDAF algorithm’s initial state estimate is assumed to be a priori knowl-

edge. Because the single frequency high precision DRTK solution is not usually available

at the beginning of the data runs, the standalone GPS reported baseline solution could be
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used to initialize the state estimates. Experimentation and results for this algorithm are

discussed in the next section.

4.3 Radar PDAF Aiding DRTK

The second method for integrating GPS and radar measurements presented in this thesis

incorporates the same components as the first method but prioritizes the single frequency

DRTK solution over the radar PDAF solution when a high precision solution is available.

If a DRTK solution is not available, the radar PDAF range solution is utilized along with

the standalone GPS reported baseline to aid the radar PDAF solution in the case that no

validated radar measurements are reported. This method’s performance is limited by its

dependence on the single frequency high precision DRTK solution availability. However,

utilizing the DRTK solution when it is available results in more accurate range estimates

of the bumper to bumper spacing . The state vector for this algorithm is the same as the

previous method and was shown before in Equation (4.1).

The block diagram of the Radar Aiding DRTK Filter (RADF) algorithm’s operation can

be seen in Figure 4.2, which shows that the DRTK solution is implemented as the navigation

solution as long as it is available. For this thesis, the single frequency DRTK solution was

used to accomplish the low-cost goal of this thesis. Figure 4.2 shows that if the PDAF

solution does not validate any radar measurements, the standalone GPS reported baseline

solution will serve as the measurement update and reinitialize the PDAF estimate as it was

used in the GARF algorithm. When the radar PDAF solution does validate measurements,

the PDAF range solution is used as the navigation solution for the system. The range

solution will ultimately return to the single frequency high precision DRTK solution when

the DRTK solution becomes available.

Just like the previous method, the PDAF algorithm’s state estimate is initialized with

the assumption of a priori knowledge of the initial state parameters. Again, the initial state

estimates can be determined using GPS measurements of range, range rate, and bearing.
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Figure 4.2: Block Diagram for RADF Algorithm

Because the single frequency high precision DRTK solution does not become fixed until

several epochs into the data run as discussed in Chapter 2, the initial state estimates can be

determined using the standalone GPS reported baseline solution.

4.4 DRTK/PDAF Fusion Algorithm

While the previous two methods described utilize both the radar measurements and the

GPS measurements in the ranging solution, neither technique performs a direct fusion of the

two sensors’ measurements. Also, the difference in update rates between the GPS and radar

systems limits the output rate of the RADF algorithm. If the DRTK solution was required

to assist the radar PDAF system, the updates would only occur at a rate of 1 Hz or 2 Hz,

which is the usually update rate for low-end GPS receivers. One second or half a second is

a large amount of time when attempting close proximity convoying. An automotive vehicle

control system would require a much faster update rate than what the GPS receiver could

provide. Therefore, it is imperative that the DRTK solution is “interpolated” with the radar
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solution in a separate Kalman Filter that combines the radar PDAF and single frequency

high precision DRTK solutions.

The block diagram for DRTK/PDAF (DPKF) algorithm can be seen in Figure 4.3,

Figure 4.3: Block Diagram for DPKF Algorithm

which shows that both the DRTK and radar PDAF solutions are used as measurement

updates at their individual update rates. The algorithm is a single state system that uses

range, r, as the state estimate with covariance, P . The time update for the scalar Kalman

filter is described by Equations (4.2-4.3)

x̂k+1 = x̂k + δtṙPDAFk (4.2)

Pk+1 = Pk +Q (4.3)

where δt denotes the time between updates, which for the Delphi radar in this thesis is 0.05

seconds (20 Hz), and ṙPDAF denotes the range rate estimate output from the radar PDAF

solution. The discrete covariance matrix of the process noise is represented by Q. In this

thesis, (0.01m)2 was used for Q based upon the resolution and variance of the Delphi ESR

range rate measurements.
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The measurement update consists of two updates due to the different update rates of

the DRTK and radar measurements. The system update consists of two different Kalman

gains and measurement covariance values for the radar and DRTK measurements. The

measurement update for the PDAF measurements is described by Equations (4.4-4.6)

KRk =
P−k

P−k +RRk

(4.4)

P+
k = (1−KRk)P

−
k (4.5)

x̂+
k = x̂−k +KRk(rPDAFk − x̂−k ) (4.6)

where rPDAFk denotes the range output from the PDAF solution. The transition matrix, H,

does not appear because it is just unity. The measurement uncertainty of the radar PDAF

solution and the Kalman gain associated to it are denoted by RR and KR, respectively.

In this thesis, RR is (0.1m)2 based upon the resolution and variance of the Delphi ESR

range measurements. This measurement update using the radar PDAF outputs occurs every

iteration, and the DRTK outputs are used in the next part of the measurement update at

the slower update rate of the GPS receiver. The GPS measurement update operation is

similar to the first part of the measurement update and can be seen in Equations (4.7-4.9)

KDk =
P−k

P−k +RDk

(4.7)

P+
k = (1−KDk)P

−
k (4.8)

x̂+
k = x̂−k +KDk(rDRTKk

− x̂−k ) (4.9)

where rDRTKk
denotes the range output from the single frequency DRTK solution and the

Kalman gain associated to the DRTK measurement update is represented by KD and the

measurement uncertainty of the DRTK solution is represented by RD, which is 1e−7m in this

thesis based upon the variance of the DRTK solution. Because the covariance of the DRTK
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solutions is much lower than the covariance on the radar PDAF solutions, KD should be

consistently much larger than KR. This algorithm continues in a recursive manner for the

entirety of the data run.

The DPKF algorithm will perform the fusion of the radar PDAF solution and the

DRTK algorithm solution utilizing the higher update rate of the radar measurements and

the high accuracy of the DRTK solution inside a single Kalman filter. The higher update

rate, as stated before, will allow for real-time robust control involving high dynamics and

close spacing between vehicles in networks similar to ACC systems.

4.5 Performance Analysis of GPS/Radar Integration

In this section, the GPS/Radar fusion algorithms discussed in the previous section are

evaluated using various data sets. The data sets that are analyzed in this chapter were

collected using the same vehicles discussed in the previous chapters including the modified

Infiniti G35 and the two Peterbilt 579 trucks. The performance of each of the algorithms is

determined based on the accuracy of the range solution and on the stability of the solution.

In platooning and convoying control systems, the vehicle to vehicle range estimate is the

primary concern of the solution. For error analysis of the range estimates, the dual frequency

high precision DRTK solution is used as the reference solution.

4.5.1 Truck Convoying Data Run

In the first data set, the two Peterbilt 579 trucks were used at Auburn’s NCAT test track

as described previously in Chapter 3. The path for the test run is shown in Figure 4.4 where

the mapping background was provided by GPS V isualizer. This data set was used instead

of the NCAT data set presented previously in order to show this data set’s inconsistent single

frequency DRTK high precision and the different fusion algorithm’s response to the DRTK

solution’s unavailability.
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Figure 4.4: Novatel Reported Path for Peterbilt Trucks at NCAT Test Track

As with the previous data set, the trucks sat static on the track at the beginning of

the run in order to allow the radar time to consistently track the lead truck before moving.

Also, the single frequency DRTK algorithm was given time to acquire a fixed integer solution

before moving. The two truck’s relative range over the period of the data run is shown in

Figure 4.5. Four independent range solutions are shown in the figure (PDAF, Standalone

GPS, dual frequency DRTK, single frequency DRTK). It is clear from Figure 4.5 that the

single frequency high precision solution, shown in blue, was not available for the entire data

run. It is also evident from the figure that the radar PDAF solution was able to maintain a

relatively accurate range estimate compared with the dual frequency DRTK solution.

Figure 4.5: Relative Range Over Time for Data Run with Trucks at NCAT
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4.5.1.1 GARF Algorithm Performance

The collected data was processed through the GPS Aiding Radar Filter (GARF) algo-

rithm, and the resulting range error is shown in Figure 4.6. The GARF algorithm range

errors were calculated using the high precision DRTK range solution as the reference. Every

validated measurement solution that came from the radar PDAF is shown in red, and when

no measurement could be validated in the PDAF, the standalone GPS reported baseline

solution was used as the navigation solution, shown in blue. The standalone GPS solution

also acted to reinitialize the PDAF estimate as described before in this chapter.

Figure 4.6: GARF Algorithm Range Error for Trucks at NCAT

Figure 4.6 shows that for a large majority of the data run, the radar PDAF solution was

able to track the desired target and generate its own solution. The GPS mode can be the

single frequency DRTK high precision solution or the differenced GPS baseline if the DRTK

solution is unavailable. In this data set, the single frequency high precision solution was

unavailable during the 300 to 400 second window. Therefore, the standalone GPS solution

was utilized. The standard deviations and mean errors for the range solution in radar mode

and GPS mode of the algorithm are seen in Table 4.1.

Obviously, the level of accuracy is not as high as the high precision DRTK solution.

However, the algorithm’s solution has sub-meter level accuracy for a majority of the run.
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Table 4.1: GARF Algorithm Range Standard Deviations and Mean Error for Trucks

Mode Standard Deviation (m) Mean Error (m)

Radar PDAF 0.3215 0.2578
Standalone GPS 0.0885 0.2194

This level of error is not surprising considering the Delphi ESR utilized has a resolution of

only 10 centimeters and the noise levels on the radar are higher than that on a GPS unit.

Other factors play into the error in the solution. For instance, as mentioned previously, the

radar’s reported measurements may not be coming from the same exact spot on the trailer

of the lead truck the entire run. The radar could be tracking the left side of the trailer and

then the right side, which could change the total range between the radar and the target

reported. The accuracy of the GARF solution is also dependent upon the accuracy of the

dimensions of the cab and trailers of the trucks which are used to find the equivalent distance

between the front bumper of the following truck and back of the lead truck’s trailer. Any

imperfections in the dimensions would directly create a bias in the bumper to bumper range

as calculated by the dual frequency DRTK solution. This potential offset could be the cause

for the 8 centimeter bias that is seen in the solution for the first 230 seconds of the data run

where the trucks are sitting still. With enough data collection, this possible error source can

be validated and eliminated once an accurate characterization of the bias is determined. If

the mounting positions of the GPS antennas are not well known on the vehicles, then the

radar solution might be trusted more than the GPS solution. Future work might consider

estimating the GPS antenna offsets in real-time.

4.5.1.2 RADF Algorithm Performance

The truck data set was also processed through the Radar PDAF Aiding Filter (RADF)

algorithm, and the resulting range error for this algorithm is shown in Figure 4.7. The radar

PDAF solution is shown in red, the standalone GPS solution is shown in blue, and the single

frequency high precision DRTK solution is shown in black. It is apparent from Figure 4.7
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that for only a portion of the data run, the single frequency high precision DRTK solution

was available. Between 300 and 450 seconds in the run, the DRTK solution was unavailable,

and the radar PDAF solution was utilized. During that period of time, the standalone GPS

solution was used for a brief period. The standard deviations and mean errors for the range

solution in radar mode, GPS mode, and DRTK mode of the algorithm are seen in Table 4.2.

Figure 4.7: RADF Algorithm Range Error for Trucks at NCAT

Table 4.2: RADF Algorithm Range Standard Deviations and Mean Errors for Trucks

Mode Standard Deviation (m) Mean Error (m)

Radar PDAF 0.2542 0.1813
Standalone GPS 0.1157 0.2205
L1 DRTK 0.0075 0.0028

As expected, the accuracy of the solution was greatly improved when utilizing the high

precision DRTK solution. The values seen in Table 4.2 are an improvement from the previous

method. The solution is obviously more consistent when the DRTK solution is available. The

single frequency DRTK solution becomes available in the data run at roughly 216 seconds,

which is shortly before the trucks begin moving but still a long time for the single frequency

DRTK algorithm to fix integers. However, the location was not an ideal GPS environment
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due to nearby foliage and was chosen purposefully to emphasize the realistic possibilities of

navigating in poor GPS environments where radar measurements can be utilized.

4.5.1.3 DPKF Algorithm Performance

The resulting range error for the truck data set processed through the DPKF algorithm

is shown in Figure 4.8. The radar PDAF only solution is shown in red, the standalone GPS

solution is shown in green, and the single frequency high precision DRTK solution is shown

in blue. The DPKF fusion solution is shown in black.

Figure 4.8: DPKF Algorithm Range Error for Trucks at NCAT

For only a couple segments of the data run, the single frequency high precision DRTK

solution was available and able to assist the algorithm. Between 300 and 450 seconds in

the run, the DRTK solution was unavailable and the fusion algorithm depended upon the

radar PDAF solution more. During that period of time, the standalone GPS solution could

have been used as a replacement for the DRTK solution. However, the mean error of the

standalone GPS range solution was higher than the radar PDAF solution in a majority of

the data sets collected in this research. Based upon this trend, the standalone GPS range

solution was not utilized in the algorithm. However, the standalone GPS solution would be

used if the radar PDAF and DRTK solutions were unavailable. Naturally, the range solution
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varied much more when the high precision DRTK solution dropped out. However, the DPKF

solution did maintain a reasonable level of accuracy and converged back toward the DRTK

solution when the high precision DRTK solution returned. The standard deviations and

mean errors for the range solution of the DPKF algorithm compared to the other solutions

can be seen in Table 4.3.

Table 4.3: DPKF Algorithm Range Standard Deviations and Mean Errors for Trucks

Solution Standard Deviation (m) Mean Error (m)

Radar PDAF 0.3479 0.2666
Standalone GPS 0.6057 0.7390
L1 DRTK 0.0075 0.0028
DPKF 0.2830 0.1531

4.5.2 Sedan Convoying Data Run

In order to further compare the performance of the two algorithms, another data set

was analyzed. This data was the same data collected using the modified Infiniti G35 test

vehicle at the Auburn RV fields analyzed in Chapter 3. This data set was explored in the

comparison of the algorithms because there are multiple instances when the radar loses sight

of the lead vehicle and the radar PDAF estimate stops reporting a solution. Also, different

test vehicles were used such that a comparison of test vehicles and environment could be

made between the two data runs.

The two sedan’s relative range over the period of the data run is shown in Figure 4.9. It

is evident from Figure 4.9 that the single frequency high precision solution was available for a

large majority of the data run. It is also clear from the figure that the radar PDAF solution

was not able to maintain a relatively accurate range estimate and drifted away from the

true range linearly as discussed before in Chapter 3. However, the radar PDAF estimate’s

absence can be aided by the algorithms developed in this chapter as will be shown in the

following sections.
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Figure 4.9: Relative Range Over Time for Data Run with Sedans at RV Fields

4.5.2.1 GARF Algorithm Performance

This second set of data was processed through the GARF algorithm, and the resulting

range error is shown in Figure 4.10. The radar PDAF validated measurement solution is

shown in red, and the standalone GPS reported baseline solution is shown in blue. As before,

the standalone GPS solution also acted to reinitialize the PDAF estimate.

Obviously, the radar mode solution of the GARF algorithm was consistently more accu-

rate than the standalone radar PDAF estimate due to the standalone GPS reported baseline

solution aiding the PDAF algorithm when no validated radar measurements were reported.

Recall that the PDAF only solution was able to overcome losing track of the lead vehicle

around 380 seconds but not at approximately 470 seconds in a larger “blind zone.” This

larger “blind zone” was overcome using the GARF algorithm. However, later in the run,

there was a spike in the error that was caused by a loss of lock in the radar that resulted in

a drift of the solution as the radar locked onto another object like a telephone pole that was

in the proximity of the path the vehicles were traveling. This target jump occurred in the

middle of a turn at a low speed when the PDAF algorithm did not detect a large difference

in velocity between the pole and the vehicle. The solution came back to the correct solution
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Figure 4.10: GARF Algorithm Range Error for Sedans at RV Fields

when the DRTK algorithm corrected the PDAF drift by re-centering the PDAF validation

region around the DRTK range solution. The different modes’ standard deviations and mean

errors can be seen in Table 4.4.

Table 4.4: GARF Algorithm Range Standard Deviations and Mean Errors for Sedans

Mode Standard Deviation (m) Mean Error (m)

Radar PDAF 0.4943 0.1638
Standalone GPS 0.1683 0.1948

Something else worth noting is the much lower error seen at the beginning of the run

where the sedans were static compared to the beginning of the previous data run with the

trucks. This decrease in error was caused by the size of the target being tracked or the

environment in which the data was collected. The sedan’s bumper is a much smaller area for

the radar to track compared to the trailer of the truck where the radar readings may have

been scattered. The smaller the area, the less the data would be scattered making it more

consistent. Also, there were no dimensions to incorrectly measure in order to relate the GPS

range and radar range since the sensors were mounted in approximately the same location
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on each vehicle as previously discussed in Chapter 3. This would eliminate the potential

bias error caused by incorrect vehicle dimensions discussed earlier in this chapter.

4.5.2.2 RADF Algorithm Performance

The second data set was also processed through the RADF algorithm, and the resulting

range error for this algorithm is shown in Figure 4.11. The figure shows that for only ap-

proximately 23 seconds, the single frequency high precision DRTK solution was unavailable.

After that point in the run, the DRTK solution was available and used as the navigation

solution for the algorithm. The standard deviations and mean errors for the range solution

in radar mode and DRTK mode of the algorithm are seen in Table 4.5. The standalone GPS

reported baseline solution was never required, and therefore, no error was calculated for the

GPS reported baseline solution.

Figure 4.11: RADF Algorithm Range Error for Sedans at RV Fields

As expected, the accuracy of the solution was significantly improved when utilizing the

high precision DRTK solution. The values seen in Table 4.5 are an improvement from the

previous method. The solution is obviously more consistent because the DRTK solution was
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Table 4.5: RADF Algorithm Range Standard Deviations and Mean Errors for Sedans

Mode Standard Deviation (m) Mean Error (m)

Radar PDAF 0.0100 0.0100
L1 DRTK 0.0016 0.0014

available for almost the entire data set. The single frequency DRTK solution becomes avail-

able much faster than the convergence time in the truck data set. This shorter convergence

time could have been due to location which was a much better GPS environment due to

continuous and good sky visibility and practically no foliage near the vehicles during the

data run. The error values for the radar PDAF mode are extremely small because the radar

PDAF mode was only utilized for a brief period at the beginning of the run until the single

frequency DRTK solution acquired a fix.

4.5.2.3 DPKF Algorithm Performance

The sedan convoy data set was also processed through the DPKF algorithm, and the

resulting range error for this algorithm is shown in Figure 4.12. As expected, the accuracy

of the solution was significantly improved when utilizing the high precision DRTK solution.

The standard deviation of the DPKF solution was approximately 19.6532 meters, which

is definitely not accurate enough for convoying navigation. However, the accuracy and

consistency of the fusion solution is obviously degraded by the inaccurate PDAF solution

which drifts off indefinitely. Therefore, the GARF algorithm is utilized along with the DPKF

algorithm to obtain a more stable solution. The GARF algorithm helps to correct the PDAF

solution using the DRTK algorithm solution when no validated measurements were passed

by the PDAF algorithm. The GARF algorithm solution was used as the input into the

DPKF algorithm as opposed to the invalid radar PDAF solution.

Figure 4.13 shows the combined algorithm performance for the sedan convoying data

set. By using the GARF algorithm solution to correct the radar PDAF solution, the user can

continue to use the radar PDAF solution instead of relying solely upon the DRTK solution.
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Figure 4.12: DPKF Algorithm Range Error for Sedans at RV Fields

The performance and stability of the algorithm is significantly increased when combining

the GARF and DPKF algorithms. The resultant standard deviation and mean error for the

combined algorithm’s range solution was 0.1427m and 0.0452m, respectively. This level of

accuracy is expected due to the single frequency high precision DRTK solution’s availability

for practically the entire data run. The spike in error in the middle of the run follows the

GARF algorithm’s spike in error which was due to a loss of lock on the target and a drift

in the solution which was corrected by the DRTK solution. The spike in error would not

occur at higher speeds because the algorithm would sense a larger difference in velocities

between the following vehicle and the incorrect object that the radar was tracking. Another

way of diminishing the spike would be by increasing the DRTK update rate or implementing

a multi-target PDAF algorithm to expect multiple targets. Wheel speed data could also be

transmitted between vehicles and used to better narrow in on the speed of the target (and

update) the PDAF algorithm wants to track.
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Figure 4.13: DPKF/GARF Combined Algorithm Range Error for Sedans at RV Fields

4.6 Conclusions

Three different methods for integrating GPS and radar measurements to develop a

robust relative positioning navigation solution were discussed in this chapter. Also, data

was collected at two locations using different vehicle configurations to test the ability of

the algorithms to consistently obtain a robust relative positioning solution with reasonable

precision. In these data sets, the DRTK solution was the most accurate solution due to the

environment and bad target tracking, but the DRTK was not the most available solution

in all the data sets. The GARF algorithm incorporated the use of the radar PDAF range

solution when the lead vehicle is in the FOV of the radar. When there were no validated

radar measurements, the GARF algorithm reinitialized the PDAF estimate using the GPS

solution. Although the precision wasn’t very high, the GARF algorithm produced a robust

solution that would be very effective in low-cost implementation. The GARF algorithm

requires less computational effort and is more cost-effective than other algorithms but loses

the level of accuracy that DRTK can obtain.
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The second method for GPS/Radar integration was the RADF algorithm that exploited

the single frequency high precision DRTK navigation solution when a high-accuracy GPS fix

was available. When the DRTK solution was not available, the radar PDAF range solution

was deployed with the aid of the standalone GPS reported baseline solution when no radar

measurements fell within the validation region. The RADF algorithm produces a more pre-

cise solution than the GARF algorithm. However, the precision of this solution is dependent

on the availability of a high precision DRTK solution and requires more GPS messages to

be reported and passed between the vehicles. The accuracy of the RADF algorithm is also

dependent upon the accuracy of the sensor mounting position measurements on the vehicles

that are subtracted from the DRTK range solution to find the effective distance from bumper

to bumper. The RADF algorithm is capable of centimeter-level accuracy if a DRTK solu-

tion is available. However, more computational effort is necessary to transmit the messages

required for DRTK positioning.

Finally, the DPKF algorithm incorporated both the radar PDAF solution and the DRTK

range solution in a separate Kalman filter that utilized both sets of measurements in the

measurement update and the range rate from the PDAF solution in the time update. The

final outcome was a range solution sampled at a higher update rate with smaller variances

than the radar-only PDAF solution. The DPKF algorithm performed well compared to

the standalone GPS baseline and radar PDAF range solutions. The DPKF algorithm pro-

duced a much more accurate and stable range solution that is viable for low-cost, real-time

applications.

The accuracy of the DPKF solution is dependent upon the accuracy of each of the

measurements. One advantage of the DPKF algorithm is its ability to compute a range

solution while only one of the two sensors report measurements without significant jumps

in the solution. While the first two methods act more like switches between radar PDAF

and DRTK solutions, the DPKF algorithm actually fuses the measurement solutions, which
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allows for smoother transitions in range solutions when one of the two sensors does not report

a good measurement.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Every relative positioning solutions discussed in this thesis involved GPS and radar

measurements as well as different methods of determining navigation information with the

measurements. The goal of this thesis was to determine the feasibility and advantages of

integrating the radar measurements with the single frequency high precision DRTK range

solution. Another objective of this thesis was to develop and implement a low-cost ranging

system that delivered a reasonably accurate and robust relative positioning solution.

There has been substantial research in the area of multi-sensor fusion involving GPS

and other sensors such as IMUs, magnetometers, and lidar. However, there was limited

literature found that directly integrated GPS and radar measurements. This thesis focused

specifically on utilizing the accuracy of the DRTK solution and the consistent availability of

the radar measurement in environments that may not be ideal for GPS navigation.

This thesis contributed the analysis of a single frequency DRTK algorithm as well as

development of a radar PDAF algorithm used to determine the correct target. Also, the

analysis of the drift in the radar’s range estimate when the lead vehicle left the radar’s

FOV was provided, which motivated the use of integrating the radar with the GPS solution.

This work also contributed an analysis of different algorithms that utilize the accuracy of

the DRTK algorithm along with the robustness of the radar PDAF solution using multiple

vehicle configurations and environments.

At the beginning of this thesis, the various error sources that can corrupt the GPS signal,

namely ionosphere delay, troposphere delay, receiver and satellite clock biases, multipath,

and ephemeris error, were presented. Many of these errors can be mitigated using Differential
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GPS techniques as discussed in detail in this thesis. A single frequency DRTK algorithm was

developed, and the architecture for the algorithm was explained extensively. The algorithm

was tested using multiple experimentally collected data sets. The experiments showed that

the single frequency DRTK algorithm was capable of fixing a solution that was within a

centimeter of error of the reference as long as the DRTK high precision solution was available.

It was also shown how a radar-only solution could be developed using a PDAF algorithm,

assuming the lead vehicle remained in the radar FOV for the duration of the data run. The

different radar measurements and errors were discussed in detail in Chapter 3. A PDAF

algorithm was then developed using the Delphi ESR with experimentally collected data. The

data collected was with two different vehicle configurations and environments. Depending

on the following distance and path of the vehicles, the lead vehicle would stay within the

FOV of the radar on the following vehicle. If the lead vehicle left the FOV of the radar,

a PDAF algorithm received no accurate measurements and would drift if left in the “blind

zone” for too long. As a result, the PDAF range solution was no longer reported. This issue

presented motivation for using the GPS solution to reinitialize the radar PDAF estimate

when no validated radar measurements were received.

Therefore, this thesis then developed a few separate algorithms that integrated GPS and

radar solutions into one navigation system allowing for a more robust relative positioning

solution that could also be cost-effective. The GPS Aiding Radar Filter (GARF) algorithm

and the Radar Aiding DRTK Filter (RADF) algorithm both presented benefits, but both

also showed limitations. The RADF algorithm delivered a more accurate range solution in

the convoy scenario than the GARF algorithm. However, the RADF algorithm’s accuracy

is directly dependent upon the availability of the DRTK high precision solution, and the

computational effort required to pass the messages over a radio link would be a disadvan-

tage compared to the GARF algorithm. Also, the slower update rate of the GPS solution

compared to the radar PDAF solution would be a disadvantage in close spacing convoying
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scenarios for the RADF algorithm which utilizes the DRTK solution more than the radar

solution.

Finally, a DRTK/PDAF fusion (DPKF) algorithm was developed to produce a more

robust ranging solution. The DPKF algorithm allows for real-time convoy range solutions

by combining the DRTK range solution with the radar PDAF solution without having to

interpolate data. The faster update rate provided by the DPKF algorithm is vital for close

spacing and high dynamics when controlling the system in a convoy scenario. The DPKF

algorithm did show lower errors than the standalone GPS and PDAF algorithm solutions,

and the DPKF algorithm solution was available for the entirety of each data set.

All of the integrated algorithms were tested using experimentally collected data sets, and

the performance of each was analyzed. As expected, the RADF algorithm was more accurate

when the high precision DRTK solution was available. The GARF algorithm performed

reasonably well considering the quality of the radar used and the possible sources of error

that could have corrupted the solution. The DPKF algorithm provided a reasonably accurate

range solution at a higher update rate, but the DPKF solution did rise with the radar PDAF

error spike and if not combined with the GARF algorithm, would drift back toward the invalid

PDAF solution. If a higher level of accuracy is required for a specific high dynamic convoying

navigation, that level of accuracy could be obtained by using a higher quality radar and by

removing many of the previously discussed possible error sources. Some of these error sources

could be removed by using reflective materials on the back of the lead vehicle to ensure the

radar is tracking the same spot on the vehicle and confirming the dimensions of the mounting

positions of the sensors on each of the vehicles are accurately measured.

5.2 Future Work

There are many steps that can be taken to further this research. It has been discussed

that the radar PDAF algorithm’s performance can be greatly improved by using a higher

quality radar than the Delphi ESR utilized in this work. The trade-off is that the user
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would be gaining a higher level of accuracy and solution stability but would be losing the

cost-effectiveness of the less expensive radar system. Using a high-end radar would greatly

improve the range solution. However, if the main priority is to keep the system as low cost as

possible, more testing with the low-cost radar can be done to better characterize the radar.

This would allow the radar PDAF algorithm’s probability coefficients to be better tuned to

specific values based on vehicle configuration, following distance, and path traveled. A set of

radar reflectors could also be placed on the rear of the lead vehicle to potentially improve the

radar’s tracking of the lead vehicle. Other integration routines including a closely coupled

relative DRTK/PDAF system could be considered and then compared to the system to find

the most practicable integration solution for ground vehicle convoying.

The research showed that the single frequency high precision DRTK range solution

had sub-centimeter accuracy compared to the dual frequency DRTK solution. However, it

was apparent that the single frequency DRTK solution was not always available in poor

GPS environments. Further work could be done to analyze when these outages occur in

the DRTK solution and to attempt to make the single frequency algorithm consistently

available. Investigation into utilizing the radar range solution to assist the single frequency

DRTK algorithm in fixing integer ambiguities faster may also be worthwhile.

Another area that could be investigated in future work might be multiple target tracking

with the radar and how the GPS solution could aid in determining the primary target among

the various tracked targets. Previous work in literature has investigated multiple target

tracking using what is known as the joint probabilistic data association filter (JPDAF). The

many assumptions and the description of the operation of the JPDAF can be seen in the work

done in [1]. Tracking multiple targets can be very useful in Adaptive Cruise Control (ACC)

scenarios where multiple vehicles are in the FOV of the radar on the following vehicle. Some

initial experimentation and description of multiple target tracking in convoying scenarios

were performed in this thesis and can be found in Appendix B.
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Also, investigation into target trajectory prediction could assist the radar-only PDAF

solution in distinguishing the desired target among other targets. Another way of improving

the radar PDAF only algorithm and the DPKF algorithm would be to incorporate an IMU

or other navigation sensor into the target prediction state. With IMUs in both the lead and

following vehicles, range and bearing estimates should be obtainable, and the system can

“reacquire” when the lead vehicle returns to the FOV.

Also, because this thesis explored the data and the algorithms in post-processing, im-

plementation in real-time was not investigated. However, convoying applications in leader-

follower scenarios would require real-time implementation of these algorithms and methods.

Transferring the algorithms currently in MATLAB code to the C++ programming language

would minimize the computational effort and allow for real-time applications. The DRTK

and PDAF algorithms can be computationally expansive depending on the sample rate of

the data collected. However, it was performed in MATLAB with a 2 Hz update rate of

the GPS receiver; therefore, real-time in C++ should be achievable. Other future work to

consider would be determining the trade-off and the ideal update rate for the GPS solution

to assist the radar PDAF solution (which updates at 20 Hz on the Delphi ESR).

Another issue to consider when integrating the GPS and radar solutions successfully in

real-time applications is the timing of the two separate sets of sensors. The individual GPS

receivers on the two convoying vehicles can be synchronized using GPS time, but the radar

used in this work does not contain a GPS time stamp. Therefore, another method of time

synchronization must be implemented. This might require going to a deeper level with the

radar’s timing system. One possible solution to this problem is using the pulse-per-second

(PPS) signal from the GPS system that the radar could be synchronized with. This time

synchronization would allow for better aligned measurements in the real-time integration of

the GPS and radar solutions in order to use the work in this thesis in the control system of

a convoy application.
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Appendix A

GPS Characteristics

There are multiple steps involved in the computation of a GPS receiver’s global posi-

tion, which begins with an iterative least squares solution after the pseudorange observation

measurements are linearized. The pseudorange, a rough range between the GPS receiver and

specific satellite, is calculated by multiplying the speed of light by the travel time from the

satellite to the time the signal was received. The timing of the GPS signals are discussed in

the next section.

A.1 GPS Time Calculations

The determination of timing is the basis of GPS techniques. The first step is the initial

calculation of the pseudorange. The traveling time between the satellite and the receiver,

τ sr , is computed by differencing the time the signal is sent from the satellite, ts, and the time

the signal is received, tr. This can be seen in Equation (A.1).

τ sr = tr − ts (A.1)

Then, the pseudorange, ρsr, can be determined by multiplying the signal travel time by

the speed of light, c. This is seen in Equation (A.2).

ρsr = τ sr ∗ c (A.2)

The satellite and receiver have innate clock errors that must also be modeled. The models

of these errors are shown in Equations (A.3) and Equation (A.4).
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ts = (tr − τ sr ) + dts (A.3)

tr = tGPS + dtr (A.4)

The pseudorange is known as an observable in hardware receivers. Therefore, the satellite

transmit time, ts, can be calculated, and after mitigating the satellite clock error, dts, the

transmit time can be acquired in GPS time.

A.2 Dilution of Precision

Dilution of precision (DOP), or geometric dilution of precision (GDOP), is a phrase used

in satellite navigation to specify the additional multiplicative effect of satellite geometry on

the precision of positional measurements. There are several different variations of the dilution

of precision, including geometric (GDOP), vertical (VDOP), horizontal (HDOP), position

(PDOP), and time (TDOP). The values of these are shown in Equations (A.5) - (A.9).

GDOP =

√
σ2
e + σ2

n + σ2
u + σ2

cb

σ2
0

(A.5)

V DOP =
σu
σ0

(A.6)

HDOP =

√
σ2
e + σ2

n

σ2
0

(A.7)

PDOP =

√
σ2
e + σ2

n + σ2
u

σ2
0

(A.8)

TDOP =
σcb
σ0

(A.9)

These DOP values are dimensionless and give rough position error when multiplied by

the predicted range errors of the receivers. The magnitudes of the DOP values are determined
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by the current satellite constellation. For further information on the dilution of precision

and its different variations, see [15].
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Appendix B

Tracking Multiple Targets and ACC Applications

In the field of driver assistance and collision avoidance technologies, there have been

many developments recently. An example of this is called adaptive cruise control (ACC),

which relies on radar or lidar readings and automatically adjusts the vehicles heading and

speed to sustain safe following distances with vehicles in the same lane [16]. The ability

to track multiple targets in a convoying scenario is imperative so that the following vehicle

does not ignore a closer vehicle while tracking the lead vehicle and collide with the secondary

vehicle.

In order to test the algorithm’s ability to track secondary vehicles in the convoying

scenario, another data set was collected using the two Peterbilt 579 trucks and the modified

Infiniti G35 sedan presented in Chapter 2. The data collection took place at the NCAT test

track such that both lanes of the track could be utilized for the data run. The trucks were

traveling at a speed of approximately 45 miles per hour such that the Inifiniti G35 could cut

in and out safely. Each truck was outfitted with a Novatel ProPak GPS receiver and Novatel

antenna. The following truck held a Delphi ESR on the bottom of the front bumper.

Similarly to the previous data sets analyzed in this work, the two trucks began the

data set static before beginning the run. The modified Infiniti G35 sedan came up beside

the following truck, cut in front of the following truck, exited the truck’s lane, and then

dropped back behind the following truck. This occurred twice during the data run, which

lasted roughly 8.5 minutes. Figure B.1 shows the Infiniti G35 exiting the travel lane in the

multiple vehicle convoy scenario.

Much work has been done in the area of multi-target tracking using radar in recent past.

A modification to the probabilistic data association filter (PDAF) tracking algorithm used in
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Figure B.1: Multiple Vehicle Convoy Data Collection at NCAT Test Track

this work is known as the Joint PDAF (JPDAF). A detailed description and example of the

JPDAF can be seen in the work done in [1]. In this thesis, a more straightforward technique

was implemented. The GARF algorithm described in Chapter 4 was utilized during the data

run. However, a set of logical conditions were implemented in order to allow the system to

read and track other targets in the radar’s FOV. These conditions included tracking targets

that had a nonzero range rate that was under a certain threshold. The threshold used in

this work was 4 meters per second due to the dynamics of the data run. This condition

allows the system to track any object that is traveling within that threshold relative to the

following vehicle to be tracked.

The next condition implemented involved targets that reported a smaller range mea-

surement than the primary target (lead truck). This condition is important because closer

targets are a larger concern than the farther targets when considering collision avoidance
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situations. If the low range rate and smaller relative range conditions are met, the system

will override the GARF algorithm’s range solution and transition the primary target to the

closer vehicle as long as the closer vehicle maintains those conditions. Figure B.2 shows the

Delphi ESR reported range measurements on all 64 channels for the duration of the data

set.

Figure B.2: Delphi ESR Reported Range Measurements for Multiple Vehicle Convoy Data
Collection at NCAT Test Track

Figure B.3 shows the range solutions using the GARF algorithm, the standalone GPS

baseline, and the DRTK solutions over time for the lead truck during the run. It is apparent

from Figure B.3 that the Delphi ESR on the following truck was able to track the lead truck

for the entirety of the data set even as the sedan cut in front of the following truck. It is

assumed this was possible due to the distance between the vehicles and the height of the

trailer on the lead truck. The two conditions previously mentioned involving range rate

and range parameters were implemented on the data set to find which radar channels at

which epochs met these stipulations. The results showed that channels 6 and 24 met these

conditions for a certain period of time at two separate segments in the data run.
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Figure B.3: Range to Lead Truck in Multiple Vehicle Convoy Data Collection at NCAT Test
Track

The resultant range solutions for the multiple vehicle convoy scenario can be seen in

Figure B.4. In the figure, the blue data points show the GARF algorithm solution for the

lead truck over the duration of the data set. The orange shows the two instances that the

Infiniti G35 cut in between the two convoying trucks. The data points shown in black around

180 seconds into the data run are data points reported from another target. Roughly 180

seconds into the run, the trucks began moving and the radar picked up a sign on the side of

the track, and because the sign was closer to the truck and the following truck’s speed was

not very high, the conditions were met to make the sign the primary target. Once the truck

increased speed, the sign’s relative speed to the truck was much higher than the threshold,

and the lead truck was reinstated as the primary target in the algorithm. This issue could

be resolved by setting another condition that the relative range and range rate conditions

are only considered when the following vehicle is moving at a high enough speed. Because

the radar is only reporting a relative velocity between vehicles, another sensor is required

for ground speed measurements. A wheel speed sensor or GPS velocity could be used in

this scenario. The GARF algorithm is already being used to obtain the lead truck’s range
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solution; thus, the GPS velocity measurement would be the most reasonable measurement

to use in this situation.

Figure B.4: Range Solutions for Lead Truck and Sedan in Multiple Vehicle Convoy Data
Collection at NCAT Test Track

The method for multiple target tracking presented in this section is not as sophisticated

as other techniques implemented in other works. However, setting conditions for relative

range, relative range rate, and ground speed can be simple logical steps in refining a navi-

gation solution involving multiple vehicles in a convoying scenario. For further description

of multi-vehicle target selection, see the work presented in [16] and [3].
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