Heavy Truck Cooperative Adaptive Cruise Control: Evaluation, Testing, and Stakeholder Engagement for Near Term Deployment
Presentation Overview

- Team Overview
- Project Scope
 - Responsibilities by Team Members
- Proposed System
- Project Tasks/Milestones
- Project Schedule
Team Overview

- Auburn
 - ME (David Bevly, Project PI)
 - ISE (Richard Sesek and Chase Murray)
 - AE (Andy Shelton)
 - CS (Alvin Lim)
 - CE (Rod Turochy)
 - Richard Bishop
 - Robert Rosenthal

- Peloton
 - Josh Switkes

- ATRI
 - Dan Murray & Lisa Park

- Meritor-Wabco
 - Alan Korn

- Peterbilt
 - Bill Kahn
Samuel Ginn College of Engineering

- 150 Faculty
- First Wireless Engineering Program in Nation
- 2500 Undergraduates
- 30 million dollars in research

Mechanical Engineering
- 26 Faculty
 - 20 Mechanical Engineering
 - 6 Materials Engineering
- 500 Undergraduates
- 100 Graduate Students
- 6 million dollars in research expenditures

Industrial & Systems Engineering
Aerospace Engineering
Computer Science
Civil Engineering
TRANSPORTATION
Research Priority Area
GPS and Vehicle Dynamics Lab

Currently 21 Students (8 PhD, 8 MS, 5 BS)

- Vehicle modeling
- Vehicle parameter estimation
- Determination of rollover propensity
- Vehicle sensor fusion/integration
- GPS/INS navigation
 - Using various grade IMUs and receivers
 - Analysis of different aiding techniques
- IMU & laser scanner fusion
- Sensor characterization and modeling
- Development of a software GPS receiver
- High speed control of ground vehicles
NCAT Test Track (& Trucks)

- Two Lane Track
- 1.7 Mile Oval
- Asphalt Instrumentation
- Well Surveyed
 - Level
 - 2° Crowns
 - 8° Banked Turns
- 802.11 and wireless serial communication around entire facility
- RTK system setup with corrections available in all paved areas

Test facility is available for validating vehicle modeling and estimation algorithms using instrumented vehicle test-beds
Integrate vision measurements (camera and/or lidar) with GPS/INS to provide lane level positioning.
Fuse all available outputs on a vehicle for positioning to improve positioning accuracy and robustness (in GPS degraded environments) and mitigate subsystem faults.

Prior Work with FHWA EAR (#2)
Prior Work with FHWA EAR (#3)

- Assist blind or visually-impaired people in navigating in large unstructured environments that they encounter in daily life
 - Parks
 - Parking lots
 - Airports
 - Sports arenas
 - Intersections
 - Pedestrian zones

Underground Atlanta – an underground mall
Current EAR Scope (#4)

• Demonstration of Heavy Truck C-ACC
 • Utilize V2V (DSRC) to enable improved truck ACC
 • Develop and study various concepts of operations
 • Evaluate system robustness

• Determine Potential Benefits
 • Traffic congestion effects
 • Teaming logistics/feasibility
 • Fuel saving benefits
 • User (driver) interfaces and acceptability
David Bevly (ME)

- General Area of Expertise
 - Vehicle Dynamics, Control, and Navigation
- Project Focus Area
 - System Integrator
 - Interface to Peloton
- Phase 1 Tasks
 - Initial analysis of radar, GPS, and Truck CAN data
 - Development of mass estimation algorithms
- Phase 2 Tasks
 - Implement optimized sensor fusion algorithms
 - Implement mass estimation algorithms
 - Integrate control systems for vehicle testing
- Graduate Students
 - Dan Pierce
 - Sostenes Perez
 - William Apperson
Richard Sesek (ISE)

- General Area of Expertise
 - Human Factors Engineering, Usability, and Safety
- Project Focus Area
 - Human Machine Interface/Usability
- Phase 1 Tasks
 - Initial evaluation of HMI impacts, safety considerations
 - Development of human performance evaluation heuristics
- Phase 2 Tasks
 - Evaluation of system against HMI measures of effectiveness
 - Use Technology Acceptance Model (TAM) to assess user control and display needs and preferences
- Graduate Students
 - Nicholas Smith
Chase Murray (ISE)

- General Area of Expertise
 - Vehicle Routing & Logistics, Scheduling

- Project Focus Area
 - Identify impacts to trucking industry operations
 - Interface with ATRI

- Phase 1 Tasks
 - Analyze current trucking traffic to identify critical freight corridors in which platooning operations are likely to be viable
 - Estimate expected platoon sizes, impacts to delivery schedules, and waiting times for trucks to join a platoon

- Phase 2 Tasks
 - Identify road segments in which platoons should be avoided (e.g., due to speed limitations or road curves)
 - Characterize the types of trucking operations that are likely to benefit from platooning (e.g., line-haul operations, or LTL carriers)

- Graduate Student
 - Jonathan Woodruff
Andrew Shelton (AE)

• General Area of Expertise
 • Aerodynamics, Computational Fluid Dynamics (CFD)

• Project Focus Area
 • Aerodynamic modeling of platoon configuration

• Phase 1 Tasks
 • Lower fidelity CFD simulations for Ahmed body, Ground Transportation System (GTS), and Generic Conventional Model (GCM)
 • Initial aero model for pair of GCM tractor trailer models

• Phase 2 Tasks
 • High fidelity CFD simulations
 • Improved aero model with parameter effects such as leader or follower and crosswind

• Graduate Students
 • Andrew Watts
Alvin Lim (CS)

- General Area of Expertise
 - Wireless, Mobile and Reconfigurable Networks
- Project Focus Area
 - Reliable, Secure and High-Throughput Wireless Networks for Supporting Truck Platooning
- Phase 1 Tasks
 - Initial analysis of requirements for wireless platooning
 - Develop tools for measuring reliability and throughput
- Phase 2 Tasks
 - Implement reliable wireless vehicular communication protocols
 - Implement optimization of throughput for platooning messages
 - Implement security protocols for vehicle networking
 - Integrate and test high throughput and reliable vehicle networks
- Graduate Students
 - Song Gao
Rod Turochy (CE)

- General Area of Expertise
 - Traffic Flow and Simulation
- Project Focus Area
 - Evaluation of impacts of C-ACC platooning of heavy vehicles on traffic operations
- Phase 1 Tasks
 - Task 1.6: Preliminary evaluation of traffic impacts using VISSIM (a traffic simulation software)
- Phase 2 Tasks
 - Task 2.7: Detailed evaluation of traffic impacts using VISSIM based on test track experiment
- Graduate Students
 - One graduate student to be determined
Richard Bishop (Auburn consultant)

- General Area of Expertise
 - Intelligent / Connected / Automated Vehicles
 - Intelligent Vehicle-Highway Systems
- Project Focus Area
 - Operational Concepts
 - Business Case
 - User / Industry Acceptance
- Phase 1 Tasks
 - ConOps and requirements development
 - Business case evaluation
 - Impacts evaluation
- Phase 2 Tasks
 - System evaluation against MOEs
 - Evaluate operating strategies
 - Assist in Final Report and Demonstration
- Phase 3 Tasks
 - Presentation of project findings at key industry conferences
Peloton Technology

• Lead: Dr. Josh Switkes
 • Chris Gerdes, Stanford
 • Dave Lyons (Former Dir Eng. Tesla)
 • Steve Boyd

• General Area of Expertise
 • Vehicle Dynamics and Control
 • Production safety/assistance/control systems

• Project Focus Area
 • System implementation
 • Market analysis and feedback

• Phase 1 Tasks
 • ConOps
 • Requirements

• Phase 2 Tasks
 • System Prep
 • Test and Revision
Peterbilt

- Lead: Bill Kahn - Mgr Advanced Concepts
 - Bryan Knight - Project Engineer
- General Area of Expertise
 - OEM Vehicle Research and Development
- Project Focus Area / Contributions
 - System Integration
 - Vehicle Test
- Phase 1 Tasks:
 - System Design Input
- Phase 2 Tasks
 - Integration and Test
Meritor WABCO

- **Lead:** Alan Korn
 - Bryan Murphy – principle engineer
- **General Area of Expertise**
 - Active Safety Systems
 - Vehicle dynamics and control
- **Project Focus Area / Contributions**
 - System implementation
 - Integration with braking system
- **Phase 1 Tasks**
 - Develop concept of operations
 - Define requirements
- **Phase 2 Tasks**
 - System preparation
 - Evaluate operating strategies
• Lead: Lisa Park
 • Dan Murray
 • David Pierce
• General Area of Expertise
 • Industry Analytics
 • Trucking Industry SMEs
 • GIS Data Analysis
• Project Focus Area / Contributions
 • Identify industry technical requirements
 • Solicit and evaluate industry input and feedback
• Phase 1 Tasks
 • Establish Industry Operations Panel (IOP) with carrier and driver subcommittees
 • Identify industry issues, technology requirements, operational requirements and system/project expectations
• Phase 2 Tasks
 • Evaluate operating strategies and assess driver acceptance
C-ACC Limitations & Current Needs

• Operation in mixed traffic
• Operation with non-identical vehicles
 • Mass
 • Drivetrain
• Human factors
• Fleet operations applicability
• Robustness
 • Communication disruptions
 • Sensor errors
Proposed System

- Two Peterbilt Trucks
 - GPS/IMU/Radar for positioning
 - DSRC Radios for V2V Communications
- Various Experiments
 - Analytical/Simulation Analysis
 - Test Track Validation
 - Interstate Validation
Phase One: Defining the Right System for Industry

- **Task 1.1:** Project Management
- **Task 1.2:** Develop Concept of Operations
 - user issues
 - operational requirements
 - technical approach
 - input from Industry Operations Panel (IOP)
 - using standard IEEE or ANSI template
 - Auburn lead (Bishop)
- **Task 1.3:** Instrument NCAT Trucks to Perform Sensor/RF Level Assessments
 - instrument trucks with DSRC, radar
 - run trucks manually on Auburn track with typical inter-vehicle gaps
 - collect data to support requirements development
 - Auburn lead
Phase One: Defining the Right System for Industry

- **Task 1.4: Define Requirements**
 - based on ConOps
 - define detailed requirements to guide prototype development
 - validate requirements in simulation
 - requirements reviewed by IOP Carrier Subcommittee
 - Deliverable 1.1: Concept of Operations and Requirements Definition Summary
 - Auburn lead

- **Task 1.5: Examine Business Case for Near-Term CACC Trucking Operations**
 - internal experts plus fleet data used to define initial business case
 - factors addressed include
 - potential market size
 - cost factors and tradeoffs
 - payback time
 - potential enablers and/or barriers
 - coordination of trucks for coupling
 - assessing which types of fleet operations are most suited for early deployment of CACC
 - review by IOC
 - ATRI lead
Phase One:
Defining the Right System for Industry

• Task 1.6: Perform Preliminary Evaluation of Impacts
 – mobility, safety, and other factors
 – traffic simulations included
 – working with industry groups to identify potential safety issues for examination in Phase Two
 • IOC
 • TMC
 – Auburn lead (Bishop)

• Task 1.7: Prepare Phase One Report
 – Deliverable 1.2: Phase One Results Summary
 – presented to FHWA in summary meeting
 – Auburn lead
Phase One Milestones

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Completion (Month)</th>
<th>Planned Evaluation Metrics</th>
<th>Criteria for Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.1: Concept of Operations</td>
<td>3</td>
<td>Checklist as to standard ConOp elements as used in Sys. Eng.; system requirements acceptable to Fleet Operations Panel</td>
<td>D1.1 Concept of Operations and Requirements Definition accepted by FHWA</td>
</tr>
<tr>
<td>complete</td>
<td></td>
<td>3-month checklist as to standard ConOp elements as used in Sys. Eng.; system requirements acceptable to Fleet Operations Panel</td>
<td></td>
</tr>
<tr>
<td>M1.2: Requirements Definition</td>
<td>7</td>
<td>Requirements for functional operation, user interface, and aspects specific to fleet operations defined.</td>
<td>Requirements reviewed and accepted by IOP.</td>
</tr>
<tr>
<td>complete</td>
<td></td>
<td>7-month requirements for functional operation, user interface, and aspects specific to fleet operations defined.</td>
<td></td>
</tr>
<tr>
<td>M1.3: Business Case and Impacts</td>
<td>11</td>
<td>Quantified business case data and traffic simulations data. Approach accepted by IOP.</td>
<td>Business Case results reviewed by Industry Operations Panel. Traffic simulation results reviewed by FHWA.</td>
</tr>
<tr>
<td>Evaluation complete</td>
<td></td>
<td>11-month quantified business case data and traffic simulations data. Approach accepted by IOP.</td>
<td></td>
</tr>
</tbody>
</table>
Phase One Schedule

2014

<table>
<thead>
<tr>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1.1: Project Mgmt</td>
<td>Early</td>
<td>Original</td>
<td>Removed</td>
<td>Bevly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1.2: Develop ConOp</td>
<td>Bishop/Peloton M1.1</td>
<td></td>
</tr>
<tr>
<td>Task 1.3: Sensor/RF Assess</td>
<td>Early</td>
<td>Bevly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1.4: Define Rqmts</td>
<td>Peloton/Bevly M1.2 D1.1</td>
<td></td>
</tr>
<tr>
<td>Task 1.5: Ex. Business Case</td>
<td>ATRI</td>
<td></td>
</tr>
<tr>
<td>Task 1.6: Evaluate Impacts</td>
<td>Auburn M1.3</td>
<td></td>
</tr>
<tr>
<td>Task 1.7: Phase One Report</td>
<td>Bishop D1.2</td>
<td></td>
</tr>
</tbody>
</table>

- Accelerated compared to proposal
- ConOps has started already
Concept of Operations Draft Outline

- **Purpose of Document**
- **Background**
 - current situation on the roads for freight
- **Operational Needs**
 - trucking industry aspects relevant to CACC
 - where need is greatest
- **User-Oriented Operational Description**
 - what the system does
 - viewpoint of driver
 - viewpoint of fleet personnel
- **System Overview**
 - functionally focused engineering description
- **Operational Environment**
 - types of roads on which CACC operates
 - weather and other conditions under which CACC operates
- **Support Environment**
 - Maintenance
 - Standards
- **Operational Scenarios for Within-Fleet Operations**
 - trucks leave together hub-hub
 - trucks leave separately and find each other on the road
- **Appendices**
- **References**
Phase Two: Real-World Assessment

- **Task 2.1: Project Management**
- **Task 2.2: System Preparation on Vehicle**
 - implement based on Ph 1 functional requirements
 - Commercial ACC algorithms tuned for CACC
 - HMI implemented
 - Achieve Initial Operational Capability
 - Auburn lead
- **Task 2.3: Data Collection On-track to Assess Operational Envelope**
 - develop evaluation plan
 - scenarios and maneuvers
 - gain Human Subject Testing approval from Auburn IRB
 - data collection under strict safety protocol
 - Auburn lead
Phase Two: Real-World Assessment

- Task 2.4: Evaluate Initial System Against Measures of Effectiveness (MOEs)
 - use Task 2.3 data to evaluate
 - a) component/subsystem robustness and reliability (including V2V performance)
 - b) vehicle control performance (gap maintenance, hard braking, cut-ins, system faults, linking events)
 - c) HMI / driver control performance (resumption of longitudinal control, lane change coordination)
 - d) safety
 - e) fuel economy (SAE Type 2 test)
 - f) maintenance aspects
 - DFMEA completed
 - Deliverable D2.1: Initial Track-Testing Evaluation Results Summary
 - Auburn lead
Phase Two: Real-World Assessment

• Task 2.5: Implement Design Revision
 – system revisions as needed to improve performance
 – Auburn lead

• Task 2.6: Perform Extended Track Test
 – utilize ongoing truck operation on Auburn pavement testing track
 – perform test of two CACC trucks operating for an extended period (~60 hours)
 • including challenging maneuvers (cut-ins, etc.)
 – Auburn lead
Phase Two: Real-World Assessment

- **Task 2.7: Re-evaluate System based on Extended Testing**
 - evaluate system against MOEs and make revisions as needed
 - Auburn lead
- **Task 2.8: Conduct On-Highway Evaluation**
 - working with Alabama DOT
 - Evaluation
 - user issues
 - fleet issues
 - SAE Type III Fuel Economy Test
 - technical performance / robustness
 - Auburn lead
Phase Two: Real-World Assessment

• Task 2.9: Evaluate Operating Strategies
 – runs in parallel with other tasks
 – ATRI fleet-specific data used to apply the measured system performance parameters to actual fleet operations
 – Specific case studies based on anonymized fleet data
 – Results extrapolated to truck freight operations generally.
 – conduct traffic simulations based on the case studies and performance data to assess mobility impacts.
 – IOP review and comment
 – results feed into Deliverable D2.2: Operating Strategies & Driver Acceptance Results Summary
 – ATRI lead
Phase Two: Real-World Assessment

- **Task 2.10: Assess Driver Acceptance**
 - runs in parallel with other tasks
 - Data based on on-track testing and highway testing – both quantitative and qualitative – examined
 - provide guidance for system validation and refinement
 - inform business analysis.
 - Work with Driver Subcommittee of the IOP to explore driver issues relative to MOEs.
 - Areas of interest: specific controls, usability, training, and user acceptance
 - Identify issues for in-depth human factors experiments.
 - Technology Acceptance Model (TAM) will be used
 - feeds into Deliverable D2.2: Operating Strategies & Driver Acceptance Results Summary
 - Auburn lead
Phase Two: Real-World Assessment

• Task 2.11: Demonstrate Results and Prepare Final Report
 – demonstration for FHWA and invited stakeholders
 – Final Report to capture key aspects of task results and provide recommendations for next steps
 – Deliverable D2.3: Phase Two Results Summary
 – Deliverable D2.4: Final Demonstration
 – Auburn lead
Phase Two Milestones

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Completion</th>
<th>Planned Evaluation Metrics</th>
<th>Criteria for Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2.1: Heavy Truck CACC Operational</td>
<td>2</td>
<td>System performing per requirements set in Phase One.</td>
<td>Initial technical capability achieved for 2-truck CACC system.</td>
</tr>
<tr>
<td>M2.2: Design Revision based on initial track testing complete</td>
<td>5</td>
<td>System upgrade performance goals achieved.</td>
<td>D2.1: Initial Track-Testing Evaluation Results Summary</td>
</tr>
<tr>
<td>M2.3: Extended duration track and on-highway testing complete</td>
<td>8</td>
<td>Meet test plan goals including length / duration of test, roadways, traffic scenarios.</td>
<td>Extended duration track and on-highway testing complete</td>
</tr>
<tr>
<td>M2.4: All assessments complete and prototype demonstrated</td>
<td>12</td>
<td>Full review by IOP and FHWA.</td>
<td>D2.2: Operating Strategies & Driver Acceptance Results Summary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2.3: Phase Two Results Summary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D2.4: Final Demonstration</td>
</tr>
</tbody>
</table>
Phase Two Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan</td>
<td>Feb</td>
</tr>
<tr>
<td>Task 2.1: Project Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.2: System Prep</td>
<td>Early</td>
<td></td>
</tr>
<tr>
<td>Task 2.3: Data Collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.4: Evaluate MOEs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.5: Design Revision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.6: Extended Track Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.7: Re-evaluate System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.8: Conduct On-Highway Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.9: Evaluate Operating Strategies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.10: Assess Driver Acceptance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.11: Demonstration / Final Report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Accelerated from original proposal
- Overlaps with Phase 1 where logical
Phase Three: Disseminate Results

• Task 3.1: Project Management
• Task 3.2: Transition Research Results
 – Technical papers and presentations provided to:
 • ATA Technology and Maintenance Council
 • Mid-America Truck Show
 • SAE Heavy Vehicle Engineering Conference
 – Team will provide FHWA with an Interface Control Document (ICD), simulation parameters, and other documentation necessary to take the work forward.
 – ATRI will disseminate educational materials through their media outlets.
 – Auburn lead