Name: Key

Exam # 2

ELEC 5760/6760

Mon 11/28/22

Constants:
$$\pi = 3.14159$$
, $\epsilon_0 = 8.854 \text{ pF/m}$, $1 \text{ atm} = 101.325 \text{ kPa}$, $1 \text{ G} = 9.8 \text{ m/s}^2$,

Equations:
$$PE = mgh$$
, $KE = \frac{1}{2}mv^2$, $P_s = \rho gh$, $F_{PPA} = \frac{\varepsilon_o \varepsilon_r A V^2}{2d^2}$

$$V_{PI} = \sqrt{\frac{8kd_o^3}{27A\varepsilon_o \varepsilon_r}}, \quad A_{circle} = (\pi)r^2, \quad d = a(\frac{m}{k}) = aS, \quad y(t) = \frac{2m\Omega A_x}{c^2 \omega_n} \cos(\omega_n t)$$

$$P_t = P_s + \frac{\rho v^2}{2}, \quad f_d = \frac{f_s}{1 + \frac{v_{object}}{2}}, \quad V_{rms} = \frac{V_{amplitude}}{\sqrt{2}}, \quad C_{PPA} = \frac{\varepsilon_o \varepsilon_r A}{d}$$

Laplace Transforms:
$$\pounds[cu(t)] = \frac{c}{s}$$
, $\pounds[ce^{-at}] = \frac{c}{s+a}$, $\pounds[cte^{-at}] = \frac{c}{(s+a)^2}$

Problems:

1) An object fell onto a hard surface where its velocity then went to 0 m/s in 100 ms. The onboard shock sensor indicated an average acceleration of -500 m/s² during the impact. If $G = 9.8 \text{ m/s}^2$, what height did the object fall from? (10 points)

$$a \approx \frac{\Delta V}{\Delta +} \rightarrow \Delta V = |a|\Delta t = (500)(100 \times 10^{5}) = 50 \text{ m/s}$$
 $KE = PE$

$$\frac{1}{2}mV^{2} = mgh \rightarrow \frac{1}{2}V^{2} = gh$$

$$h = \frac{V^{2}}{2g} = \frac{(50)^{2}}{2(9.8)} = 127.55m$$

Match the question with an answer by writing the letter of the answer in the blank next to the question. No answer is used more than once. (30 points)

Questions

1) This instrument uses optical wavelength absorption to determine gas content:	
-	
3) When a reflected wave from a moving object has a different frequency:	
4) In a PPA, this pulls the electrodes toward	rd each other:/V
5) A type of MEMS fluidic actuator:	
6) A bimorph is made of two materials with different values of:	
7) Measures 3 axis acceleration and 3 axis rotation:	
8) Measures pressure with respect to a full	vacuum:O
9) The principle of buoyancy is also know	rn as: p
10) Closed loop accelerometers and pressure sensors make use of:	
11) This is a 1 axis inertial sensor:H	
12) The acceleration of a typical mechanical shock event has a characteristic:	
13) MEMS gyroscopes make use of the:	
14) All energy dissipative systems experience this:	
15) Two high Q MEMS gyros in close proximity can experience this problem:	
Answers to choose from	
A. Intermode Coupling	7. Doppler Shift
B . IMU	J. Diaphragm
	K. Half Sine Pulse
. Spectrometer	L. Thermal Noise
Æ. Interferometer	M. CTE
F. Flow FET	M. Electrostatic Force
G. Coriolis Force	Ø. Absolute Pressure Sensor
A. Gyroscope	P. Archimedes' Principle

2) An object is moving through a fluid with a density of 2 g/cm³ at 10 m/s. Its pressure sensor measures a total pressure of 105 kPa using a gauge pressure sensor. What is the static pressure of the object in the fluid? (10 points)

$$P_{t}^{2g} \left(\frac{2g}{cm^{3}}\right) \left(\frac{18g}{1000g}\right) \left(\frac{100cm}{m}\right)^{3} = 2000 \text{ kg/m}^{3}$$

$$P_{t}^{2g} = P_{s}^{2g} + \frac{pV^{2}}{2}$$

$$Or: P_{s}^{2g} = P_{t}^{2g} - \frac{pV^{2}}{2}$$

$$= 105,000 - \frac{(2000)(10)^{2}}{2}$$

$$= 5000 P_{a}$$

= 5 KPa

3) A parallel plate actuator (PPA) consists of two square electrodes 100 μ m across, separated by 10 μ m, in a vacuum. The spring constant is 50 N/m. What is the pull-in voltage? (10 points)

$$V_{PI} = \sqrt{\frac{8K d_0^3}{27A \, \epsilon_0 \epsilon_r}} = \sqrt{\frac{8(50)(10 \, \text{NO}^{-6})^3}{27(100 \, \text{NO}^{-6})^2 (8.854 \, \text{X/O}^{-12})(1)}}$$

$$= 409.05 \, \text{V}$$

4) What is the amplitude of motion along the sense axis for a certain MEMS gyroscope that has a mass of 1 μ g, $c = 0.1 \times 10^{-6}$ Kg/s, $f_n = 10$ kHz, and $A_x = 1$ μ N when it experiences and angular rate of 180°/s? (10 points)

$$m = 1 \times 10^{-9} \text{ kg}$$

$$y(t) = \frac{2m \Omega A \times}{c^{2} w_{n}}$$

$$= \frac{2(1 \times 10^{-9})(180)(\frac{\pi}{180})(1 \times 10^{-6})}{(0.1 \times 10^{-6})^{2}(2\pi)(10,000)} = \frac{(1 \times 10^{-9})(1 \times 10^{-6})}{(0.1 \times 10^{-6})^{2}(10,000)}$$

$$= 10 \mu m$$

5) A parallel plate actuator (PPA) consists of two round electrodes, 500 μm in diameter, separated by 10 μm, in a vacuum. If one electrode is connected to ground and the other electrode is connected to a high frequency AC voltage (100 V amplitude), what is the average force produced by the PPA? (10 points)

$$F = \frac{\xi_0 \, \xi_r A V^2}{2 \, d^2} = \frac{(8.854 \times 10^{-12})(1) (\pi) (250 \times 10^{-6})^2 (100)^2}{(2)(2)(10 \times 10^{-6})^2} = 43.46 \, \mu N$$

note:
$$V = \frac{100}{V^2} = V_{rms}$$

$$V^2 = \frac{100^2}{2}$$

6) What does GCA stand for? (5 points)

7) For a nitinol SMA actuator, what does SMA stand for? (5 points)

8) What is the measurand for a vibrating proof mass MEMS gyroscope? (5 points)

9) The proof mass for a certain open-loop MEMS accelerometer experiences a displacement of $10 \mu m$ due to a 10 m/s^2 acceleration. What is the natural frequency of the accelerometer in Hz? (5 points)

$$d = a \frac{m}{K} = aS = \frac{a}{\omega_n^2}$$

$$S = \frac{d}{a} = \frac{10 \times 10^{-6}}{10} = 1 \times 10^{-6} \text{ s}^2$$

$$W_n = \frac{1}{\sqrt{S}} = \frac{1}{\sqrt{1 \times 10^{-6}}} = 1000 \text{ rad/s}$$

$$f_n = \frac{\omega_n}{27} = \frac{1000}{277} = 159, 16 \text{ Hz}$$

Bonus Question (10 points)

A certain open loop MEMS accelerometer has the following transfer function, where the damping ratio is <u>not</u> equal to one:

 $G(s) = \frac{1}{s^2 + 8s + 1}$. want: g = 1, $G_{cL} pc = 1$

It is placed in a closed-loop controller (shown below) to adjust the damping ratio to one $\underline{\text{and}}$ the DC gain to one $[G_{cl}(s) = 1 \text{ at DC}]$. Select values for the two gains, a and b, to achieve this goal for the closed loop system. Show all steps.

$$\frac{V(s)}{A(s)} = \frac{Ga}{1 + Gab} = \frac{a}{(s^2 + 8s + 1)(1 + \frac{ab}{s^2 + 8s + 1})} = \frac{a}{s^2 + 8s + 1 + ab}$$

$$1. b = \frac{15}{a} = \frac{15}{16}$$

$$a = 16$$

$$b = \frac{15}{16}$$

Blank sheet for Calculations