NAME: KEY

Exam #2

ELEC 5820/6820

Wed 12/2/15

Constants:
$$\pi = 3.14159$$
,

$$\varepsilon_0 = 8.854 \text{pF/m}, \qquad 1\text{G} = 9.8 \text{m/s}^2,$$

$$1G = 9.8 \text{m/s}^2$$
,

$$\begin{split} & \textbf{Equations:}, \qquad k \approx \frac{N_{leg}}{N_{zig}} \frac{Ewt^3}{L^3}, \quad Power = \frac{Energy}{Time}, \quad C = \frac{\varepsilon_o \varepsilon_o A}{d}, \qquad \alpha = \frac{\Delta L/L}{\Delta T}, \quad Q = CV \\ & E_c = \frac{CV^2}{2}, \qquad F_{GCA} = \frac{n\varepsilon_o \varepsilon_r A\beta V^2}{2} \big[\frac{1}{(d_1 - x)^2} - \frac{1}{(d_1 + x)^2} \big], \qquad F_{PPA} = \frac{\varepsilon_o \varepsilon_r AV^2}{2(x_o - x)^2} \\ & V_P = \sqrt{\frac{8kx_o^3}{27A\varepsilon_o \varepsilon_r}}, \qquad A_{circle} = (\pi)r^2, \qquad d = a(\frac{m}{k}) = aS, \qquad F_{CDA} = \frac{n\varepsilon_o \varepsilon_r b\beta V^2}{d_o} \end{split}$$

Problems:

1) Circle the item below that is NOT an application for a pn junction. (5 points):

Diode

Photovoltaics

Thermoelectric Cooler

2) The proof mass of an open-loop MEMS accelerometer with a sensitivity of 1 µs² experienced a displacement of $10\mu m$. What acceleration did it experience, in units of m/s²? (5 points):

$$d=aS \rightarrow a=\frac{d}{S}=\frac{10\times10^{-6}}{1\times10^{-6}}=10\text{ m/s}^2$$

Match the question with an answer by writing the letter of the answer in the blank next to the question. No answer is used more than once. (20 points) Questions

1) This actuator can suffer from lateral instability:
2) A temperature sensor often integrated into a MEMS device:
3) A technique for aligning polarized crystallites in piezoelectrics:
4) A MEMS pump that uses electro-osmotic flow:
5) A commonly used SMA material in MEMS:
6) For a negative feedback system, the oscillation condition where $A\beta = -1$:
7) In dicing a wafer, the saw lane width:
8) Membranes and diaphragms are used in MEMS:
9) A 2-axis resonator is often used in MEMS:A
10) This is used to correct a distorted optical wavefront:
Answers to choose from A Gyroscopes B) Joule Heater C CDA D) Fiducial F) Poling F) Wankel Engine G) SOI F) Kerf A Gyroscopes B) Pressure Sensors FlowFET FlowFET FlowFET FlowFET FlowFET M) PHA FlowFET M) Pull-in Voltage M) Nitinol M) Adaptive Optics Barkhausen Criterion
3) Circle the item below that is <u>NOT</u> used as an energy harvesting device (5 points):
FlowFET, TEC, Rectenna, PN Junction

4) Consider the transmissibility plot for a MEM device with a 10mg proof mass shown below and answer the following questions with regard to this device:

(a) What is the resonant frequency, f_n (5 points)?

(b) What is the resonant frequency, ω_n (5 points)?

(c) What is the mechanical quality factor, Q (5 points)?

(d) If the frame has a displacement amplitude of $1\mu m$ at the resonant frequency, what is the displacement amplitude of the proof mass at the resonant frequency (5 points)?

(e) What is the magnitude of $T(j\omega)$ at DC? (5 points)?

- 5) Consider the transfer function of a MEMS spring-mass-damper with a 1g proof mass: $T(s) = \frac{10s + 16}{s^2 + 10s + 16}$
 - (a) What is the order of this system (5 points)?

(b) What is the natural frequency, ω_n (5 points)?

(c) What is the system spring constant, k (5 points)?

(f) What is the Quality factor, Q (5 points)?

$$\frac{\omega_n}{Q} = 10 \rightarrow Q = \frac{\omega_n}{10} = \frac{4}{10} = 0,4$$

(g) What is the damping coefficient, c (5 points)?

6) For the MEMS spring-mass-damper device drawn below, with all beams the same size, what is an expression for the system spring constant, k, in terms of beam (spring) dimensions (L, w and t) and the Young's Modulus (E)? (5 points)

- 7) A parallel plate actuator (PPA) consists of two square electrodes, 1mm on a side, separated by $20\mu m$, in a vacuum. The system spring constant is 25N/m and the movable electrode has a mass of $100\mu g$.
- a. What is the pull-in voltage for this actuator? (5 points)

b. What is the stable range of motion for this actuator when it is directly connected to a DC power supply? (5 points)

$$0 \le X \le \frac{20 \times 10^{6}}{3} m$$

Bonus Question (5 points)

Consider the phase shift oscillator shown below, consisting of an inverting amplifier gain stage and 3 identical RC delay stages where $R=10k\Omega$ and C=1nF. What is the frequency of oscillation?

$$\left(\frac{V_0}{V_i} = \tan^{-1}(-RCW) = -60^{\circ} \text{ for oscillation}\right)$$

$$f = \frac{-\tan(-60^{\circ})}{2\pi RC} = \frac{-\tan(-60^{\circ})}{2\pi(10N0^{3})(10N0^{3})} = 27.566 KHz$$

Blank sheet for Calculations