Resistive Sensing of Aqueous Solutions

1. Background

Water: $H_2O \rightarrow a$ molecule with a polar covalent bond

Physically:

st D of partial negative charge
partial positive charge

Therefore, as a polar compound, H₂O has a permanent dipole, which causes ionic compounds (salts) to dissolve in it.

Example: table salt: $NaCl \rightarrow Na^+ + Cl^-$

 $Na⁺$ is a cation and Cl⁻ is an anion

In water: $NaCl + H₂O \rightarrow Na^{+}(aq) + Cl^{-}(aq)$

 $Na⁺(aq)$ and Cl⁻(aq) are hydrated ions

 $Cl⁻(aq) \rightarrow hydrated anion:$

Observe that the partial positive charge on the H_2O molecules is drawn to the Cl- anion in the exaggerated drawing. The resulting composite structure is called a hydration shell or a hydration sphere.

Similarly, the partial negative charge on the H_2O molecules is drawn to the Na⁺ cation in the exaggerated drawing below, also forming a hydration shell. Na+(aq) \rightarrow hydrated cation:

Note: atom sizes are NOT to scale

2. Applying an electric field across the solution

Na⁺(aq) and Cl⁻(aq) act as mobile charge carriers, like electrons and holes in a semiconductor.

However, ion charge carriers are slow compared to electrons and holes. Therefore, an aqueous solution is a much lower frequency electrical system.

The higher the NaCl concentration, the higher the number of mobile charge carriers, and the higher the electrical conductivity.

The symbol for electrical conductivity is σ , the same symbol used for tensile stress in mechanical systems.

For low salt concentrations:

 $\sigma \propto$ *ion concentration*:

 $\sigma = \sum_{i=1}^n \lambda_i C_i$ $i=1$

where: σ = solution electrical conductivity (EC)

 λ_i = ionic conductivity of the ith ion type

 C_i = molar concentration of the ith ion type

For high concentrations: ions will interact with each other, invalidating this equation:

concentration

By measuring EC, the concentration of dissolved salts can be determined.

3. Temperature effects

EC is affected by temperature nonlinearly. However, for $0^{\circ}C \le T \le 30^{\circ}C$, a linear model is:

 $\sigma_T = \sigma_{25}[1 + a(T - 25)]$

Where: σ_{25} is the EC at 25^oC

"a" is a temperature compensation factor, $[a] = 1$ ^oC

Various values for "a" are found in publications: 0.0191, 0.02, 0.025, 0.0187, etc. However, all are approximately $a = 0.02$.

Often, σ_{25} is calculated and used for comparison.

4. Measuring EC of an aqueous solution

Consider 2 parallel electrodes in a homogeneous solution:

Assumptions: $A \gg d^2$, and a uniform current density

Therefore: $R = \frac{d}{dt}$ σA

Conductance: $G = \frac{1}{R}$ $\frac{1}{R} = \frac{\sigma A}{d}$ $\frac{\partial A}{\partial t} = \sigma \kappa$

The sensor's cell constant, κ, is a function of the sensor's geometry, and is independent of concentration or temperature.

$$
[\kappa] = m
$$

$$
[G] = S
$$

$$
[\sigma] = S/m
$$

If κ is known, you can measure G (or R) and calculate σ .

a. Flat electrode sensor

Consider:

elec. Nonconductive Substrate

This type of electrode structure is easy to build in MEMS or on a PCB.

However, it has a non-uniform current density. Therefore, κ is difficult to calculate.

But, you can use an EC sensor of known κ and measure EC with it. Then measure G with the flat electrode sensor. Then calculate κ for the flat electrode sensor:

$$
\kappa = \frac{G}{\sigma}
$$

With now knowing κ for the flat electrode sensor, the sensor can be used to determine σ from any G measurement.

5. Frequency effects

When a metal electrode is put in water, a water molecule making contact with the metal will transfer an electron to the metal, leaving the water molecule with a positive charge.

Litronolecules adsorbed onto electrode metal! $e(\overline{t})$ first row water, hydration sheath

Other water molecules (dipoles) will be attracted to the H_2 0 molecules on the electrode, and will align with them.

aligned HeO (dipole) indecute

Cations will be attracted to the aligned dipoles and will form hydrated cations there:

 N_d W_{α} inner H.P. outer Helmholtz plane

Some Na⁺ ions will also chemically bond to the metal, forming an inner Helmholtz plane.

The 2 Helmholtz planes together form the "electrical double layer," or EDL, which is two capacitors in series $(C_{H1}$ and C_{H2}), and in parallel with

the resistance (R_F) between the electrode and the water when a voltage is applied. The subcircuit consisting of C_{H1} , C_{H2} , and R_F is called the Faradaic impedance.

Circuit model:

The Faradaic impedance of the EDL results in an EC measurement error at DC and low frequencies.

Measuring EC at a sufficiently high frequency shorts across the EDL for a more accurate EC reading.

But too high of a measurement frequency will result in shorting across the small parasitic capacitance, C_p .

Choose some measurement frequency that \sim shorts C_{H1} and C_{H2}, but not C_p . The goal is to measure R_w with the sensor. The exact frequency used depends on the sensor. With the sensors I have developed, 50 kHz to 1 MHz seems to work well.

6. More on hydration shells

A hydrated anion:

Mechanically, a hydration shell is a SMD with a mechanical ω_n and Q.

The lower the concentration, the larger the hydration shell around each ion: the larger its mass and the lower its ω_n .

If the dipole-like hydration shell is electrically excited at its ω_n , it will vibrate. This is called relaxation and f_n is called the relaxation frequency. Electrically, the solution of hydration shells has a minimum impedance at that frequency, due to its complex permittivity.

A frequency sweep across the liquid can be performed with a network analyzer connected to an appropriate set of electrodes to detect the impedance minima. This information can sometimes be used to estimate the chemical composition and/or contaminant concentration of the aqueous solution. This is called Electrochemical Impedance Spectroscopy (EIS).

In aqueous solutions, the relaxation frequency can be quote low, in the 5 MHz to 10 MHz range.

2-Point and 4-Point Resistance Measurements

1. 2-Point Resistance Measurement

 $R_{\text{wires}} \sim \text{few} \ \Omega. \ \text{If } R_{\text{test}} >> R_{\text{wires}} \text{, then } R_{meas} = \frac{v}{i}$ $\frac{v}{i} \approx R_{test}$

However, if $R_{\text{test}} \approx R_{\text{wires}}$, then $R_{\text{meas}} = \frac{v}{i}$ $\frac{v}{i} = R_{test} + R_{wires}, \text{ and}$ measuring R_{meas} does not yield a good estimate for R_{test} .

2. 4-Point Resistance Measurement

Apply a known current to the resistance under test, I_{known} . Measure the voltage across R_{test}, V_{meas}, with a high impedance voltmeter. Then compute R_{meas} to determine R_{test} :

$$
R_{meas} = \frac{V_{meas}}{I_{known}} = R_{test}
$$

This is a more precise resistance measurement technique, but it is also more complicated.

Capacitive Sensing

1. Simple Parallel Plate Capacitor

d is the electrode separation distance.

For A \gg d²: fringing effects can be ignored and $C = \frac{\varepsilon_0 \varepsilon_r A}{d}$ \boldsymbol{d}

where: ε_0 = permittivity of free space = 8.854 pF/m

 ε_r = relative permittivity of the dielectric material between the electrodes For a vacuum $\varepsilon_r = 1$, and for most gases: $\varepsilon_r \approx 1$

 $A =$ electrode overlapping surface area $=$ wL here

Ways to detect with a capacitive sensor (non-fringing sensor):

- 1) Change the dielectric material, i.e. change $\varepsilon_r \rightarrow$ this can be difficult to do.
- 2) Change the electrode separation distance \rightarrow easy to do.

Consider this simple MEMS accelerometer:

$$
C = \frac{\varepsilon_o \varepsilon_r A}{d_o + x(t)}
$$

where d_0 is d when $x(t) = 0$ ("at rest" condition)

3) Change the electrode overlap area \rightarrow easy to do.

Consider this MEMS accelerometer

d, w, and ε_r are constants here.

$$
L(t) = L_o + x(t)
$$

$$
\therefore C(t) = \frac{\varepsilon_0 \varepsilon_r w L(t)}{d} = \frac{\varepsilon_0 \varepsilon_r w}{d} (L_0 + x(t))
$$

2. Typical Capacitor Sizes in MEMS

For a parallel plate capacitor: let $w = 50 \mu m$, $L = 100 \mu m$, $d = 10 \mu m$, and $\varepsilon_r = 1$

$$
\therefore C = \frac{(8.854)(50x10^{-6})(100x10^{-6})}{10x10^{-6}} = 0.004427 pF = 4.427 fF
$$

1 fF = $1x10^{-15}$ F ! \rightarrow a <u>very</u> small capacitance!

Consider that a 10% change is C is only 0.4427 fF!

With sensor capacitances this small, stray capacitance can be a big problem. Consider this:

For the cable: $C_L \approx$ $(8.854)(100x1 - 6)(1)$ $\frac{1.00 \times 1^{-6} (1)}{0.01} = 0.08854pF$

Observe that: $\frac{C_L}{C}$ $\frac{C_L}{C_m} = 20 \rightarrow C_L = 20 C_m!$ or $C_L = 200 \Delta C_m |_{10\% \Delta}!$

Instrumentation model:

 C_m adds with C_L . Therefore, you need to locate the interface circuitry as close to the MEMS capacitor as possible, such as on the same chip.

Note: stray capacitance can also be an issue on the MEMS chip between different microstructures.

Example: A cross-section of an SOI MEMS device:

 $C_1 \rightarrow$ desired capacitance between two microstructures

 $C_2 \rightarrow$ stray capacitance in air ($\varepsilon_r \sim 1$)

 $C_3 \rightarrow$ stray capacitance in SiO₂ (ε_r = 3.9)

So, C_2 and C_3 may not be able to be ignored, depending on the design, particularly with a typical Box Layer thickness of 0.5 µm to 1µm.

3. Capacitor Interface Circuity: Oscillator

Consider C: $q = CV$ and $\dot{q} = \dot{C}V + \dot{V}C = i(t)$

In most EE application: $\dot{C} = 0 \rightarrow i(t) = C \frac{dV}{dt}$ dt

However, with capacitive sensors, $\dot{C} \neq 0$ usually

So, how then do you measure $C(t)$???

One technique is to place $C(t)$ in an oscillator circuit where freq = f(C):

Consider a simple CMOS ring oscillator:

It is a closed chain of an odd number of inverter stages \rightarrow unstable

Let τ_d = propagation delay per inverter

 $N =$ number of inverters

It take two complete cycles for two state changes (1 period)

Therefore: $f = \frac{1}{25}$ $2\tau_d N$

Although this oscillator circuit is not useful for a capacitive sensor interface circuit, consider this related circuit:

This oscillator circuit is called a relaxation oscillator, and it is based on an RC time constant that controls when a state change occurs in the unstable chain of CMOS inverters.

Circuit analysis:

Assume: (1) $R_1 = R_2 = R$

(2) C \gg input capacitance on an inverter

(3) The inverter trip voltage: $V_{tr} = \frac{V_{dd}}{r^2}$ $rac{dd}{2}$

Therefore, when V_0 crosses V_{tr} , the system changes state.

The RC time constant determines the output frequency, f_0 , let's see how:

Examine the circuit with $V_{dd} = 5V$:

With $V_{dd} = 5V$: $V_{tr} = 2.5V$

At switching time, we have this circuit model:

With this model, C is fully discharged initially and $v_0 = 7.5V$. We want to find t for $v_0 = 2.5V$.

$$
\frac{V_o}{V_s} = \frac{R}{R + \frac{1}{sC}} = \frac{s}{s + \frac{1}{RC}}
$$
\n
$$
V_s(s) = \frac{7.5}{s}
$$
\n
$$
V_o(s) = V_s(s) \left(\frac{s}{s + \frac{1}{RC}}\right) = \frac{7.5}{s + \frac{1}{RC}}
$$
\n
$$
v_o(t) = 7.5e^{-\frac{t}{RC}}
$$

We want to evaluate t when $v_0(t) = 2.5$ V

$$
2.5 = 7.5e^{-\frac{t}{RC}}
$$

Solving for t: $t = -R C ln \left(\frac{2.5}{7.5} \right)$ $\left(\frac{2.5}{7.5}\right) = 1.0986RC$

For the square wave output: T = 2t and $f = 1/T$, and $f = \frac{0.455}{RT}$ RC

For an actual circuit, the equation for f will be slightly different due to the analysis assumptions. But for low frequency square waves (less than about 1 MHz), it should be close. This also works for fixed C: R-sensor.

For the case where $C = \frac{\varepsilon_0 \varepsilon_r A}{d}$ $\frac{\varepsilon_r A}{d} = \frac{\varepsilon_o \varepsilon_r A}{x(t)}$ $\frac{\partial^{\epsilon} r^n}{\partial x(t)} \rightarrow$ plate separation C sensor,

$$
f = \frac{0.455}{RC} = \frac{0.455x(t)}{R\varepsilon_0\varepsilon_r A} \to \text{therefore } f \propto x(t)
$$