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Resistance Sensing 
 

1. A single resistance sensor 
 
Consider a resistive sensor, Rs, where 𝑅௦ ∝ 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑛𝑑: 

 
 

𝑉௢ =
5𝑅௦

1000 + 𝑅௦
 

 
Notice the Vo is a nonlinear function of Rs.   
 
A plot of Vo vs. Rs is shown on the next page,  
 
where 100 Ω ≤ Rs ≤ 1900 Ω. 
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Although the interface circuit is powered off of 5V, the output voltage 
only ranges from about 0.4 V to 3.3V. 
 
Although Rs might be linearly proportional to the measurand, Vo is clearly 
not linearly proportional to Rs.  Is this a problem?  It might be or it might 
not be, depending on the application. 
 
 

2. A differential resistance sensor 
 
Here, the sensor consists of two resistors, R1 and R2, similar to a 
potentiometer, where the measurand causes one resistor to increase in 
resistance while the other one decreases by the same amount. 
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𝑉௢ =
5𝑅ଶ

𝑅ଵ + 𝑅ଶ
 

 
Let’s let: 𝑅ଵ = 𝑅௢ + ∆𝑅 and 𝑅ଶ = 𝑅௢ − ∆𝑅,  
 
where Ro is a constant and ΔR is a function of the measurand. 
 

Therefore: 𝑉௢ =
ହ(ோ೚ି∆ோ)

ோ೚ା∆ோାோ೚ି∆ோ
= 2.5 − 2.5

∆ோ

ோ೚
 

 
Observe that Vo is now linear function of ΔR. 
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Example: Let Ro = 1 kΩ and 0 Ω ≤ ΔR ≤ 900 Ω 
 

 
 
Vo is now linearly proportional to -ΔR, but it only goes from about          
0.25 V to 2.5 V. 
 
Similarly, let: 𝑅ଵ = 𝑅௢ − ∆𝑅 and 𝑅ଶ = 𝑅௢ + ∆𝑅, resulting in 
 

𝑉௢ =
ହ(ோ೚ା∆ோ)

ோ೚ି∆ோାோ೚ା∆ோ
= 2.5 + 2.5

∆ோ

ோ೚
, 

 
yielding: 
 
 



Lecture 9/17/24 

5 
 

 
 
Which is still a linear response, but the slope is now positive, with Vo 
between about 2.5 V and 4.75 V. 
 
 

3. Dual differential resistance sensor 
 
Some resistance sensors consist of 4 resistors, arranged as two differential 
pairs: 
 𝑅ଵ = 𝑅௢ + ∆𝑅 

𝑅ଶ = 𝑅௢ − ∆𝑅 
𝑅ଷ = 𝑅௢ − ∆𝑅 
𝑅ସ = 𝑅௢ + ∆𝑅 
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Let’s connect the 4 resistors as shown below: 

 
 
Notice that the resistors are connected to realize two differential pairs 
where one is inverted compared to the other one.  The is called a 
Wheatstone Bridge sensor configuration. 
 

𝑉ଵ =
𝑉(𝑅௢ − ∆𝑅)

𝑅௢ + ∆𝑅 + 𝑅௢ − ∆𝑅
=

𝑉(𝑅௢ − ∆𝑅)

2𝑅௢
 

 

𝑉ଶ =
𝑉(𝑅௢ + ∆𝑅)

𝑅௢ + ∆𝑅 + 𝑅௢ − ∆𝑅
=

𝑉(𝑅௢ + ∆𝑅)

2𝑅௢
 

 

Let’s define: 𝑉௢ = 𝑉ଶ − 𝑉ଵ =
௏(ோ೚ା∆ோ)

ଶோ೚
−

௏(ோ೚ି∆ோ)

ଶோ೚
= 𝑉

∆ோ

ோ೚
 

 
Example: Ro = 1 kΩ, V = 5 V, 0 Ω ≤ ΔR ≤ 900 Ω 
 
yielding: 
  



Lecture 9/17/24 

7 
 

 
 
Vo is a linear function of ΔR. 
 
Notice that this configuration has a larger Vo range (0 V to 4.5 V) than 
with the 2-resistor differential resistance sensor, i.e. this is a more 
sensitive sensor. 
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Resistive Sensors 
 

1. Resistance of a section of conductor 
 
Consider this section of a conductor:  

 
 

Resistance: 𝑅 = 𝜌
௅

ௌ
 

 
where ρ ≡ resistivity, a material property 
 
[ρ] = Ω-cm 

 
 
2. Temperature effects 

 
ρ varies with temperature: 
 
For metals: 𝜌[𝑇] ≈ 𝜌௢(1 + 𝛼்𝑇 + 𝛽்𝑇ଶ) 
 
   where ρo ≡ a resistivity at some reference temperature,  
      such as 0oC 
      αT and βT → temperature coefficients 
      αT ≡ linear temperature coefficent of resistivity 

 (TCR) 
    [αT] = 1/oC and [βT] = 1/(oC)2 
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For metals: αT ~ 10-3 oC-1 and βT ~ 10-7 oC-2 
 
Since αT >> βT, an approximation is often used: 𝜌[𝑇] ≈ 𝜌௢(1 + 𝛼்𝑇) 
 
Example: at 20oC for Al: ρo = 2.65x10-6 Ω-cm and αT = 4.3x10-3 oC-1, 
where T is relative to the reference temperature. 
 
This property can be used to make a metal temperature sensor (more on 
this later in the course). 
 
 

3. Strain effects 
 
Consider this section of a conductor: 

 
 
For most materials, if you axially stretch along L, the cross-sectional area 
(wt) will shrink. 
 
Let S = wt ≡ cross-sectional area of the conductor 
 

Since 𝑅 = 𝜌
௅

ௌ
, if L ↑ and S ↓, then R ↑ 

 
This leads to Poisson’s Ratio: a ratio of the tendancy of a material to get 
thinner in a transverse direction when subjected to axial stretching. 
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Poisson’s Ratio: 𝜈 = −
௧௥௔௡௦௩௘௥௦௘ ௦௧௥௔௜௡

௔௫௜௔௟ ௦௧௥௔௜௡
= −

ఌ೟ೝೌ೙ೞ

ఌೌೣ೔ೌ೗
 

 
[ν] = dimensionless 
 
Typical values for ν: 0.1 to 0.4 
 
Examining the effects of strain: 
 

 𝑅 = 𝜌
௅

௪௧
  (1) 

 

 𝑑𝑅 =
௅

௪௧
𝑑𝜌 +

ఘ

௪௧
𝑑𝐿 −

௅ఘ

௪మ௧
𝑑𝑤 −

௅ఘ

௪௧మ 𝑑𝑡  (2) 

 

∴
(2)

(1)
≡

𝑑𝑅

𝑅
=

𝑑𝜌

𝜌
+

𝑑𝐿

𝐿
−

𝑑𝑤

𝑤
−

𝑑𝑡

𝑡
 

 

 
ௗ௅

௅
≡ 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 = 𝜀ଵ 

 

 
ௗ௪

௪
≡ 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 = 𝜀௪ = −𝜈𝜀ଵ 

 
𝑑𝑡

𝑡
≡ 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 = 𝜀௧ = −𝜈𝜀ଵ 

 

∴
𝑑𝑅

𝑅
=

𝑑𝜌

𝜌
+ 𝜀ଵ + 𝜈𝜀ଵ + 𝜈𝜀ଵ =

𝑑𝜌

𝜌
+ 𝜀ଵ + 2𝜈𝜀ଵ 

 

Note: Young’s Modulus: 𝐸 =
௦௧௥௘௦௦

௦௧௥௔௜௡
=

ఙ

ఌ
 

 
[E] = Pa = N/m2 = [σ] = [P] 
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Let’s define Gauge Factor = GF, where: 
 

𝐺𝐹 =
𝑑𝑅

𝑅ൗ

𝜀ଵ
=

𝑑𝜌
𝜌ൗ

𝜀ଵ
+ (1 + 2𝜈) =

𝑑𝑅
𝑅ൗ

𝑑𝐿
𝐿ൗ

=
∆𝑅

𝑅ൗ

∆𝐿
𝐿ൗ

 

 

Note: in textbook on p. 86: it should be 
∆ோ

ோൗ

∆௅
௅ൗ
 

 
ௗఘ

ఘൗ

ఌభ
 → a change in resistivity due to strain → Piezoresistive Effect (PE) 

 
1 + 2𝜈 → a change in resistance due to a change in shape → Geometric  
                                  Effect (GE) 
 

𝐺𝐹 =
% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ
= 𝑃𝐸 + 𝐺𝐸 

 
A sensor that makes use of the GE is called a strain gauge. 
 
A sensor that makes use of the PE is called a piezoresistor. 
 
For metals: GE > PE 
 
For semiconductors: PE > GE 
 

From Table 5.1 in testbook 
Material   GF 
Metal foils   2-5 
Thin film metals  2 
Single crystal Si  -125 to +200 
Polysilicon  ±30 
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a. Strain Guages 
 

Example: A certain metal strain guage has a nominal resistance of 1 kΩ, 
and has a GF = 2.  If it experiences a 1% axial strain, what does the 
resistance become? 
 
Solution 
 

 𝜀ଵ =
∆௅

௅
|ଵ% =

଴.଴ଵ

ଵ
= 0.01 

 

 𝐺𝐹 =
∆ோ

ோൗ

ఌభ
→ ∆𝑅 = 𝑅𝜀ଵ𝐺𝐹 = (1000)(0.01)(2) = 20 Ω 

 
 𝑅௡௘௪ = 𝑅 + ∆𝑅 = 1000 + 20 = 1020 Ω 
 
 

b. Piezoresistors 
 
Single Crystal Si 
 P-type: GF up to +200 
 N-type: GF down to -125 
 
Note: a negative GF means that the resistance decreases with applied 
strain (tensile strain) 
 
ௗఘ

ఘൗ

ఌభ
= 𝑃𝐸 : what causes the piezoresistive effect? 

 
Answer: The applied strain affects the majority charge carriers in the 
semiconductor material: 
  P-Type: strain ↑ : mobility of the holes ↓ : ρ ↑ 
  N-Type: strain ↑ : mobility of the electrons ↑ : ρ ↓ 
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Note: this effect is highly dependent on crystallographic orientation, 
doping level, and temperature → pretty complicated 
 

 
ௗఘ

ఘ
= 𝜋௟𝜎௟ + 𝜋௧𝜎௧ 

 
  Where: 𝜋௟ = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑝𝑖𝑒𝑧𝑜𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
        𝜋௧ = 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑝𝑖𝑒𝑧𝑜𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
       𝜎௟ = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 
       𝜎௧ = 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 
 
The longitudinal direction is defined as the direction parallel to the 
current flow through the piezoresistor. 
 

 
 
πl and πt are a function of crystal orientation, doping, and 
temperature. 
 
 
Polysilicon 
 
Polysilicon is polycrystaline Si, therefore the piezoresistive effect 
averages over all directions 
 
   ∴ 𝐺𝐹|௣௢௟௬

ௌ௜

< 𝐺𝐹| ௦௜௡௚௟௘
௖௥௬௦௧௔௟

ௌ௜
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P-type poly Si: GF ~ +30 
N-type poly Si: GF ~ -30 
 
Polysilicon can be deposited as a thin film (up to a few µm), such as 
by LPCVD, and selectively doped to by N-type or P-type. 
 
Both N-type and P-type polysilicon piezoresistors can be realized on 
the same chip → useful for realizing a Wheatstone bridge type sensor. 
 
The piezoresistor’s resistance changes with strain, such as on a spring 
element: 
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Consider this device: 

 
 
With the four piezoresistors above, externally or internally connect 
them to realize a Wheatstone bridge confuguration. 
 

      


