Resistance Sensing

1. A single resistance sensor

Consider a resistive sensor, R_s, where $R_s \propto measurement$:

$$
V_o = \frac{5R_s}{1000 + R_s}
$$

Notice the V_0 is a nonlinear function of R_s .

A plot of V_0 vs. R_s is shown on the next page,

where $100 \Omega \le R_s \le 1900 \Omega$.

Lecture 9/17/24

Although the interface circuit is powered off of 5V, the output voltage only ranges from about 0.4 V to 3.3V.

Although R_s might be linearly proportional to the measurand, V_o is clearly not linearly proportional to Rs. Is this a problem? It might be or it might not be, depending on the application.

2. A differential resistance sensor

Here, the sensor consists of two resistors, R_1 and R_2 , similar to a potentiometer, where the measurand causes one resistor to increase in resistance while the other one decreases by the same amount.

$$
V_o = \frac{5R_2}{R_1 + R_2}
$$

Let's let: $R_1 = R_o + \Delta R$ and $R_2 = R_o - \Delta R$,

where R_0 is a constant and ΔR is a function of the measurand.

Therefore:
$$
V_o = \frac{5(R_o - \Delta R)}{R_o + \Delta R + R_o - \Delta R} = 2.5 - 2.5 \frac{\Delta R}{R_o}
$$

Observe that V_0 is now linear function of ΔR .

Example: Let $Ro = 1$ k Ω and $0 \Omega \leq \Delta R \leq 900 \Omega$

Vo is now linearly proportional to -ΔR, but it only goes from about 0.25 V to 2.5 V.

Similarly, let: $R_1 = R_o - \Delta R$ and $R_2 = R_o + \Delta R$, resulting in

$$
V_o = \frac{5(R_o + \Delta R)}{R_o - \Delta R + R_o + \Delta R} = 2.5 + 2.5 \frac{\Delta R}{R_o},
$$

yielding:

Lecture 9/17/24

Which is still a linear response, but the slope is now positive, with V_0 between about 2.5 V and 4.75 V.

3. Dual differential resistance sensor

Some resistance sensors consist of 4 resistors, arranged as two differential pairs:

 $R_1 = R_o + \Delta R$ $R_2 = R_o - \Delta R$ $R_3 = R_o - \Delta R$ $R_4 = R_o + \Delta R$

Let's connect the 4 resistors as shown below:

Notice that the resistors are connected to realize two differential pairs where one is inverted compared to the other one. The is called a Wheatstone Bridge sensor configuration.

$$
V_1 = \frac{V(R_o - \Delta R)}{R_o + \Delta R + R_o - \Delta R} = \frac{V(R_o - \Delta R)}{2R_o}
$$

$$
V_2 = \frac{V(R_o + \Delta R)}{R_o + \Delta R + R_o - \Delta R} = \frac{V(R_o + \Delta R)}{2R_o}
$$

Let's define: $V_o = V_2 - V_1 = \frac{V(R_o + \Delta R)}{2R_o} - \frac{V(R_o - \Delta R)}{2R_o} = V \frac{\Delta R}{R_o}$

Example: $R_o = 1$ kΩ, $V = 5$ V, $0 \Omega \le \Delta R \le 900 \Omega$

yielding:

Lecture 9/17/24

 V_0 is a linear function of ΔR .

Notice that this configuration has a larger V_0 range (0 V to 4.5 V) than with the 2-resistor differential resistance sensor, i.e. this is a more sensitive sensor.

Resistive Sensors

1. Resistance of a section of conductor

Consider this section of a conductor:

Resistance: $R = \rho \frac{L}{s}$ \boldsymbol{S}

where $\rho \equiv$ resistivity, a material property

 $[\rho] = \Omega$ -cm

2. Temperature effects

ρ varies with temperature:

For metals: $\rho[T] \approx \rho_o (1 + \alpha_T T + \beta_T T^2)$

where $\rho_0 \equiv a$ resistivity at some reference temperature, such as 0° C α_T and $\beta_T \rightarrow$ temperature coefficients α_T = linear temperature coefficent of resistivity (TCR) [α_T] = 1/^oC and [β_T] = 1/(^oC)²

For metals: $\alpha_T \sim 10^{-3}$ °C⁻¹ and $\beta_T \sim 10^{-7}$ °C⁻²

Since $\alpha_T >> \beta_T$, an approximation is often used: $\rho[T] \approx \rho_0 (1 + \alpha_T T)$

Example: at 20^oC for Al: $\rho_o = 2.65 \times 10^{-6}$ Ω-cm and $\alpha_T = 4.3 \times 10^{-3}$ ^oC⁻¹, where T is relative to the reference temperature.

This property can be used to make a metal temperature sensor (more on this later in the course).

3. Strain effects

Consider this section of a conductor:

For most materials, if you axially stretch along L, the cross-sectional area (wt) will shrink.

Let $S = wt \equiv cross-sectional area of the conductor$

Since $R = \rho \frac{L}{c}$ $\frac{L}{s}$, if L \uparrow and S \downarrow , then R \uparrow

This leads to Poisson's Ratio: a ratio of the tendancy of a material to get thinner in a transverse direction when subjected to axial stretching.

Poisson's Ratio: $\nu = -\frac{transverse \, strain}{axial \, strain} = -\frac{\varepsilon_{trans}}{\varepsilon_{axial}}$ ε_{axial}

 $[v]$ = dimensionless

Typical values for ν: 0.1 to 0.4

Examining the effects of strain:

$$
R = \rho \frac{L}{wt} d\rho + \frac{\rho}{wt} dL - \frac{L\rho}{w^2 t} dw - \frac{L\rho}{wt^2} dt
$$
\n
$$
\therefore \frac{(2)}{(1)} = \frac{dR}{R} = \frac{d\rho}{\rho} + \frac{dL}{L} - \frac{dw}{w} - \frac{dt}{t}
$$
\n
$$
\frac{dL}{L} = axial strain = \varepsilon_1
$$
\n
$$
\frac{dw}{w} \equiv transverse strain = \varepsilon_t = -v\varepsilon_1
$$
\n
$$
\frac{dE}{t} \equiv transverse strain = \varepsilon_t = -v\varepsilon_1
$$
\n
$$
\therefore \frac{dR}{R} = \frac{d\rho}{\rho} + \varepsilon_1 + v\varepsilon_1 + v\varepsilon_1 = \frac{d\rho}{\rho} + \varepsilon_1 + 2v\varepsilon_1
$$
\nNote: Young's Modulus: $E = \frac{stress}{strain} = \frac{\sigma}{\varepsilon}$ \n[E] = Pa = N/m² = [σ] = [P]

Let's define Gauge Factor = GF, where:

$$
GF = \frac{dR}{\varepsilon_1} = \frac{d\rho}{\varepsilon_1} + (1 + 2\nu) = \frac{dR}{dL/L} = \frac{\Delta R}{\Delta L/L}
$$

Note: in textbook on p. 86: it should be $\frac{\Delta R}{\Delta L/L}$

 $d\rho_{/\rho}$ ε_1 \rightarrow a change in resistivity due to strain \rightarrow Piezoresistive Effect (PE)

 $1 + 2\nu \rightarrow a$ change in resistance due to a change in shape \rightarrow Geometric Effect (GE)

$$
GF = \frac{\% \ change \ in \ resistance}{\% \ change \ in \ length} = PE + GE
$$

A sensor that makes use of the GE is called a strain gauge.

A sensor that makes use of the PE is called a piezoresistor.

For metals: GE > PE

For semiconductors: $PE > GE$

a. Strain Guages

Example: A certain metal strain guage has a nominal resistance of 1 k Ω , and has a $GF = 2$. If it experiences a 1% axial strain, what does the resistance become?

Solution

$$
\varepsilon_1 = \frac{\Delta L}{L}|_{1\%} = \frac{0.01}{1} = 0.01
$$

$$
GF = \frac{\Delta R}{\varepsilon_1} \to \Delta R = R\varepsilon_1 GF = (1000)(0.01)(2) = 20 \Omega
$$

$$
R_{new} = R + \Delta R = 1000 + 20 = 1020 \Omega
$$

b. Piezoresistors

Single Crystal Si P-type: GF up to $+200$ N-type: GF down to -125

Note: a negative GF means that the resistance decreases with applied strain (tensile strain)

 $d\rho_{/\rho}$ ε_1 $= PE$: what causes the piezoresistive effect?

Answer: The applied strain affects the majority charge carriers in the semiconductor material:

> P-Type: strain \uparrow : mobility of the holes \downarrow : ρ \uparrow N-Type: strain \uparrow : mobility of the electrons \uparrow : $\rho \downarrow$

Note: this effect is highly dependent on crystallographic orientation, doping level, and temperature \rightarrow pretty complicated

$$
\frac{d\rho}{\rho} = \pi_l \sigma_l + \pi_t \sigma_t
$$

Where: π_l = longitudinal piezoresistive coefficient
 π_t = transverse piezoresistive coefficient
 σ_l = longitudinal stress
 σ_t = transverse stress

The longitudinal direction is defined as the direction parallel to the current flow through the piezoresistor.

$$
z \rightarrow \frac{1}{\sqrt{\frac{1}{1}}\frac{1}{1}}
$$

 π l and π t are a function of crystal orientation, doping, and temperature.

Polysilicon

Polysilicon is polycrystaline Si, therefore the piezoresistive effect averages over all directions

$$
\therefore \, GF|_{poly} < GF|_{single}_{crystal} \, \frac{Si}{Si}
$$

P-type poly Si: GF $\sim +30$ N-type poly Si: GF \sim -30

Polysilicon can be deposited as a thin film (up to a few μ m), such as by LPCVD, and selectively doped to by N-type or P-type.

Both N-type and P-type polysilicon piezoresistors can be realized on the same chip \rightarrow useful for realizing a Wheatstone bridge type sensor.

The piezoresistor's resistance changes with strain, such as on a spring element:

- thin layer of poly si base thin inverted in the beam of the beam

Consider this device:

With the four piezoresistors above, externally or internally connect them to realize a Wheatstone bridge confuguration.

