Lecture 9/03/24

Review of Second Order Systems
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1. Consider G(s) = Frolanstal
i w?
DC Gain: G(S)|s=¢ = oz = 1
i w? .
High Frequency Response: G(5)|s500 = el = 0

Therefore, G(s) — low pass response

2. Unit Step Response

Unit step function, c(t) = u(t) — C(s) = %, is our input signal

Output signal is r(t), also R(s)

R(s) = C(s)G(s) = EL ©n ]

s|s? + 2{w,s + w?
e—(wnt
= —_ — ] 72
r(t)=1 <1_52>Sm(wm/1 Zt+0)

_ 2
0 =tan~?! <1 (2( )

1(t) has a steady state response (SR) and a transient response (TR)

Therefore, 7(t) = SR + TR = 1 + [TR term]|¢_gependent

If { = 0: undamped response: r(t) = 1 — sin (w,t)
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If 0 <{ < 1: underdamped response: r(t) is a damped sinusoid
If { = 1: response is critically damped: no oscillation in r(t)

If (> 1: response is overdamped: r(t) is a weighted sum of two exponential
functions

T(t) =1 + kle_t/rl + kze_t/TZ
See the chart below:
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Figure 4.3 Step response for second order system (4-28).



Lecture 9/03/24

Note: {=10.707 is often used in control systems, since it has a fast response
time with only a little overshoot and oscillation

3. Frequency Response of G(s)

See the chart below:

) 16(0)] -4~ aximum value = 5

4

3

econd order system (4-50).

Figure 4.11 Frequency responseé of s
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Observation about the chart:

The response is low pass

For { <0.707: a resonant frequency peak occurs at ®;, where:

Wy = Wpy/ 1 — 272

For { > 0.707: no resonant frequency peak occurs

For { = 0.707: called the Maximally Flat Response, no resonant
peak occurs. The 3 dB bandwidth = ®,.

4. Second Order System Types (Electronic Filters)

a. Low Pass Filter

G(s) = — No numerator zZeros
52+26wns+wn

b. High Pass Filter

G(s) =

— 2 numerator zeros at the s-plane origin
sZ+ZC wns+wn

c. Band Pass Filter

1S ..
G(s) = =0 Cwn5+wn — 1 numerator zero at the s-plane origin

d. Notch Filter

2 2
G(S) _ ny(s“+ws)

— numerator zeros on the s-plane imagina
S2+2¢wps+w? p gmary

axis at s = jwn
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Example filter responses:
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Fig. 14.2 Second-order filter responses.
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System Dynamics with Damping Included

Fi+Fp+Fs=0— mi + cx + kx =0 Note: using x or y for
displacement changes nothing.

. . . . k
Let’s rewrite the equation as: X + %x t—x= 0

Use w, = \/% = natural frequency

C = damping ratio and Q = mechanical quality factor, where:

c Wn _ i .0 — 1
~ = 2{w, = o Q = 27 High Q = low damping

v ¥ + 2w, x + wix = 0 : another form of our system differential EQ.

Let’s apply an external force, (t), to our MEMS device:
K S X ()
~ m > 5 ()
C

Now: mX + cx + kx = f(t)
Using Laplace transforms: ms2X(s) + csX(s) + kX(s) = F(s)
Or: X(s)[ms? + cs + k] = F(s)

We can define a mechanical transfer function: T(s), where:
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X) 1 Ym
F(s) ms2+cs+k s242lw,s+ w?

T(s) =

So what does this mean?

At DC, f(t) would be a constant force producing a displacement of the
proof mass: x = £

At AC, {(t) 1s a sinusoidal force causing the proof mass to oscillate back
and forth at a frequency, f, (i.e. it vibrates).

T(s) 1s a second order function with a low pass frequency response.

Therefore, our spring-mass-damper is a mechanical 2" order low pass
filter that filters mechanical vibrations.

If our device has very low damping (high Q), which is very common for

MEMS devices, it will have a mechanical gain near f, (small force: large
proof mass motion in the vicinity of fy,).

Transmissibility

Consider this model for our MEMS device:
K S X ()
~ m > 5 ()
C

It is often difficult to apply a specific force to the proof mass.
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Therefore, consider this arrangement for our SMD system:

“SMD” = “Spring-Mass-Damper”

Define: y(t) = input displacement to the frame
x(t) = output displacement of the proof mass

It is not difficult to apply an exact displacement to the frame (outer part
of the chip).

Note: x(t) = x,sin (wt) — sinusoidal time varying displacement
v x(t) = wx,cos(wt) — velocity
. %(t) = —w?x,sin (wt) — acceleration
Therefore, our system dynamics differential equation becomes:
Fi+Fp+Fs=0
miX +c(x—vy)+ k(x —y) =0— SDEQ

Note: (x - y) > 0 — spring in compression
(X - y) <0 — spring in tension

Take the Laplace transform of the SDEQ

ms?X(s) +cs(X(s) —Y(s)) +k(X(s)—Y(s)) =0
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~ X(s)[ms? +cs + k] =Y(s)[cs + k]

X(s) _ cstk 2{wpstwd
Y(s) ms2+cs+k  S24+20wns+tw

Yielding: T(s) =

Observe that there 1s one zero in the numerator at s = — (:—;, on the real

axis in the s-plane. This is different from the electronic filters we
discussed.

T(o) = [T(o)| 8Gw)

ITGw)| = Transmissibility

1 2w i 1 W \?
ITGw)| = (%) _ N (szn)

J-@T+EY -7+ G

|T(iw)|w=wn =4Q*—-1

ForQ>>1— [T(jow)|y=w, * @ and w, = w,
Keep in mind that for Q > %2 — underdamped condition (i.e. it rings)

So, for Q >> 1, the system is highly underdamped, which is usually the
case for MEMS devices.

A plot of |[T(jw)| versus frequency is called a transmissibility plot.

Consider an example with Q = 10 and f, =1 Hz (normalized to 1 Hz):
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Transmissibility Example with Q=10

12

10

| T(jw)|
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From the plot, what is Q and f,,?
What is [T(jw)| at DC?

What is [T(jw)| as f — o Hz?

O(w) = tan~" ( i((g)_n)z(m 2) _’e(j(‘))lwzwn - tan_l(Q)
)

wn

Q=1-— e(j(‘))lwzwn = 45°
Q=1000 — 8(jw)|y=w, = 89.94° — approaches 90°
Also: 0(jw)| =0 = 0°

And: 0(jw)| -0 = 90°

10
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So what is Q? Q is a ratio of the energy stored in an oscillating system
compared to the energy lost.

MEMS devices usually have a high Q (typically 25 to 1000s)

The zero in the numerator of T(s), s = — (2—?, results in some interesting

properties:
1) For o << o, |T(jo)|= 1, and |T(w)|my=0 = 1.
2) For ® > wn, the stopband attenuation varies with Q:

For Q = 1: attenuation from 2, to 20wy 1s 21.85 dB ~ that of
1%t order system.

For Q = 10: attenuation from 2m, to 20w, 1s 35.64 dB.

For Q = 1000: attenuation from 2m, to 20w, 1s 42.48 dB
~ that of 2" order system.

3) [TGw)| > 1 at , for any value of Q.

4) For Q= 5: |[T(jw)|w=w, = @. Therefore, we can read Q and f, off
of a transmissibility plot if Q > 5.

5) [ITGw)|] = pm/um, m/m, etc.: 1.e. dimensionless.

11
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Transmissibility Vs. Normailzed Frequency
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The Importance of Transmissibility

1. The input to a MEMS sensor might be a time dependent function of
displacement, such as acceleration. Transmissibility helps us
predict the device’s response.

2. Microstructures can be sensitive to external mechanical noise:
mechanical vibrations or acoustic energy present in the operating

environment. Transmissibility reveals the susceptibility at different
frequencies.

12
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3. Often, the relative distance or velocity between the proof mass and
the frame is an important parameter in a sensor: T(jo) gives us the
relevant system dynamics information.

4. |T(jw)|p=w, shows that the MEMS device performs like a

mechanical amplifier at that frequency, where Q is the gain between
the input displacement of the frame and the output displacement of
the proof mass (for Q > 5).

Reasonable Answers with MEMS Problems

Always think about your numerical answers to see if they are reasonable.
1) Reasonable mass

Consider a “large” Si chip for a MEMS device: 1 cm x 1 cm x 500 pm.

Since 8s; = 2.3 g/cm?, the entire chip can only have a mass of 115 mg.

Mass of the proof mass << 115 mg.

2) Reasonable natural frequency

®n = 2nf, — £, 1s usually in the audio range: 20 Hz to 20 kHz.

3) Reasonable proof mass displacements

Reasonable proof mass displacements << chip width for lateral motion or
<< chip thickness for vertical motion: 0.1 to 10 um is reasonable.

Note: displacements cannot exceed gap distances!

13
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4) Reasonable capacitance values
Reasonable MEMS capacitors ~ 1 pF: 10 pF — a really large MEMS cap

Note: MEMS associated capacitances can be much smaller than this, even
less than 1 {F (femto Farad: 1x107!1° F), particularly if you are considering
a change in capacitance.

5) Reasonable voltages and currents
Reasonable voltages can be up to a few 100 V.

What is the approximated current from continuously fully charging and
discharging a 10 pF MEMS capacitor with 100 V at 20 kHz:

Let] = Z—f ~ fCV = 20,000 * 10X10712 « 100 = 20ud << 1A.

Example unreasonable answers to MEMS problems:
1 m proof mass displacement
10 kg proof mass
V =10,000 V
[=10 A
F,=2 MHz
C=10puF

14



