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Review of Second Order Systems  
 

1. Consider 𝐺(𝑠) =
ఠ೙

మ

௦మାଶ఍ఠ೙௦ାఠ೙
మ  

 

DC Gain: 𝐺(𝑠)|௦ୀ଴ =  
ఠ೙

మ

ఠ೙
మ = 1 

 

High Frequency Response: 𝐺(𝑠)|௦→ஶ =  
ఠ೙

మ

ஶమାଶ఍ఠ೙ಮାఠ೙
మ = 0 

 
Therefore, G(s) → low pass response 
 

2. Unit Step Response 
 

Unit step function, c(t) = u(t) → 𝐶(𝑠) =
ଵ

௦
, is our input signal 

 
Output signal is r(t), also R(s) 
 

𝑅(𝑠) = 𝐶(𝑠)𝐺(𝑠) =
1

𝑠
ቈ

𝜔௡
ଶ

𝑠ଶ + 2𝜁𝜔௡𝑠 + 𝜔௡
ଶ቉ 

 

𝑟(𝑡) = 1 − ቆ
𝑒ି఍ఠ೙௧

ඥ1 − 𝜁ଶ
ቇ 𝑠𝑖𝑛 ቀ𝜔௡ඥ1 − 𝜁ଶ𝑡 + 𝜃ቁ 

 

𝜃 = 𝑡𝑎𝑛ିଵ ቆ
1 − 𝜁ଶ

𝜁ଶ
ቇ 

 
r(t) has a steady state response (SR) and a transient response (TR) 
 
Therefore, 𝑟(𝑡) = 𝑆𝑅 + 𝑇𝑅 = 1 + [𝑇𝑅 𝑡𝑒𝑟𝑚]|఍ିௗ௘௣௘௡ௗ௘௡௧ 
 
If ζ = 0: undamped response: 𝑟(𝑡) = 1 − sin (𝜔௡𝑡) 
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If 0 < ζ < 1: underdamped response: r(t) is a damped sinusoid 
 
If ζ = 1: response is critically damped: no oscillation in r(t) 
 
If ζ > 1: response is overdamped: r(t) is a weighted sum of two exponential 

functions 
  
 𝑟(𝑡) = 1 + 𝑘ଵ𝑒ି௧/ఛభ + 𝑘ଶ𝑒ି௧/ఛమ 
 
See the chart below: 
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Note: ζ = 0.707 is often used in control systems, since it has a fast response 

time with only a little overshoot and oscillation 
 

3. Frequency Response of G(s) 
 
See the chart below: 
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Observation about the chart: 
 

- The response is low pass 
 

- For ζ < 0.707: a resonant frequency peak occurs at ωr, where: 
 

𝜔௥ = 𝜔௡ඥ1 − 2𝜁ଶ 
  

- For ζ > 0.707: no resonant frequency peak occurs 
 

- For ζ = 0.707: called the Maximally Flat Response, no resonant 
peak occurs.  The 3 dB bandwidth = ωn. 

 
4. Second Order System Types (Electronic Filters) 

 
a. Low Pass Filter 
 
𝐺(𝑠) =

௡బ

௦మାଶ఍ఠ೙௦ାఠ೙
మ   → no numerator zeros 

 
b. High Pass Filter 

 

𝐺(𝑠) =
௡మ௦మ

௦మାଶ఍ఠ೙௦ାఠ೙
మ  → 2 numerator zeros at the s-plane origin 

 
c. Band Pass Filter 

 
𝐺(𝑠) =

௡భ௦

௦మାଶ఍ఠ೙௦ାఠ೙
మ  → 1 numerator zero at the s-plane origin 

 
d. Notch Filter 

 

𝐺(𝑠) =
௡మ(௦మାఠ೙

మ )

௦మାଶ఍ఠ೙௦ାఠ೙
మ  → numerator zeros on the s-plane imaginary  

        axis at s = ±jωn 
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Example filter responses: 
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System Dynamics with Damping Included 
 
FI + FD + FS = 0 → 𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 0   Note: using x or y for  
          displacement changes nothing. 
 

Let’s rewrite the equation as: 𝑥̈ +
௖

௠
𝑥̇ +

௞

௠
𝑥 = 0 

 

Use 𝜔௡ = ට
௞

௠
 ≡ natural frequency 

 
ζ ≡ damping ratio and Q ≡ mechanical quality factor, where: 
 
௖

௠
= 2𝜁𝜔௡ =

ఠ೙

ொ
 → 𝑄 =

ଵ

ଶ఍
 : High Q = low damping 

 
∴  𝑥̈ + 2𝜁𝜔௡𝑥̇ + 𝜔௡

ଶ𝑥 = 0 : another form of our system differential EQ. 
 
 
Let’s apply an external force, f(t), to our MEMS device: 
 

 
 
Now: 𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑓(𝑡) 
 
Using Laplace transforms: 𝑚𝑠ଶ𝑋(𝑠) + 𝑐𝑠𝑋(𝑠) + 𝑘𝑋(𝑠) = 𝐹(𝑠) 
 
Or: 𝑋(𝑠)[𝑚𝑠ଶ + 𝑐𝑠 + 𝑘] = 𝐹(𝑠) 
 
We can define a mechanical transfer function: T(s), where: 
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𝑇(𝑠) =
𝑋(𝑠)

𝐹(𝑠)
=

1

𝑚𝑠ଶ + 𝑐𝑠 + 𝑘
=

1
𝑚ൗ

𝑠ଶ + 2𝜁𝜔௡𝑠 + 𝜔௡
ଶ 

 
So what does this mean? 
 
At DC, f(t) would be a constant force producing a displacement of the 

proof mass: 𝑥 =
௙

௞
 

 
At AC, f(t) is a sinusoidal force causing the proof mass to oscillate back 
and forth at a frequency, f, (i.e. it vibrates). 
 
T(s) is a second order function with a low pass frequency response.   
 
Therefore, our spring-mass-damper is a mechanical 2nd order low pass 
filter that filters mechanical vibrations. 
 
If our device has very low damping (high Q), which is very common for 
MEMS devices, it will have a mechanical gain near fn (small force: large 
proof mass motion in the vicinity of fn). 
 
 
Transmissibility 
 
Consider this model for our MEMS device: 
 

 
 
It is often difficult to apply a specific force to the proof mass. 
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Therefore, consider this arrangement for our SMD system: 
 

 
 
“SMD” = “Spring-Mass-Damper” 
 
Define: y(t) = input displacement to the frame 
     x(t) = output displacement of the proof mass 
 
It is not difficult to apply an exact displacement to the frame (outer part 
of the chip). 
 
Note: 𝑥(𝑡) = 𝑥௢sin (𝜔𝑡) → sinusoidal time varying displacement 
 ∴  𝑥̇(𝑡) = 𝜔𝑥௢cos(𝜔𝑡) → velocity 
 ∴  𝑥̈(𝑡) = −𝜔ଶ𝑥௢sin (𝜔𝑡) → acceleration 
 
Therefore, our system dynamics differential equation becomes: 
 
FI + FD + FS = 0 
 
𝑚𝑥̈ + 𝑐(𝑥̇ − 𝑦̇) + 𝑘(𝑥 − 𝑦) = 0 → SDEQ 
 
Note: (x - y) > 0 → spring in compression 
  (x - y) < 0 → spring in tension 
 
Take the Laplace transform of the SDEQ 
 
𝑚𝑠ଶ𝑋(𝑠) + 𝑐𝑠(𝑋(𝑠) − 𝑌(𝑠)) + 𝑘(𝑋(𝑠) − 𝑌(𝑠)) = 0 
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∴ 𝑋(𝑠)[𝑚𝑠ଶ + 𝑐𝑠 + 𝑘] = 𝑌(𝑠)[𝑐𝑠 + 𝑘] 
 

Yielding: 𝑇(𝑠) =
௑(௦)

௒(௦)
=

௖௦ା௞

௠௦మା௖௦ା௞
=

ଶ఍ఠ೙௦ାఠ೙
మ

௦మାଶ఍ఠ೙௦ାఠ೙
మ  

 
Observe that there is one zero in the numerator at 𝑠 = −

ఠ೙

ଶ఍
, on the real 

axis in the s-plane.  This is different from the electronic filters we 
discussed. 
 
T(jω)  =  |T(jω)| |θ(jω) 
 
|T(jω)| ≡ Transmissibility 
 

|𝑇(jω)| = ඪ
1 + ቀ

2𝜁ω
𝜔௡

ቁ
ଶ

൤1 − ቀ
ω

𝜔௡
ቁ

ଶ
൨

ଶ

+ ቀ
2𝜁ω
𝜔௡

ቁ
ଶ

= ඪ

1 + ቀ
ω

𝑄𝜔௡
ቁ

ଶ

൤1 − ቀ
ω

𝜔௡
ቁ

ଶ
൨

ଶ

+ ቀ
ω

𝑄𝜔௡
ቁ

ଶ
 

 

|𝑇(𝑗𝜔)|ఠୀఠ೙
= ඥ𝑄ଶ − 1 

 
For Q >> 1 →  |𝑇(𝑗𝜔)|ఠୀఠ೙

≈ 𝑄   and 𝜔௥ ≈ 𝜔௡ 
 
Keep in mind that for Q > ½ → underdamped condition (i.e. it rings) 
 
So, for Q >> 1, the system is highly underdamped, which is usually the 
case for MEMS devices. 
 
A plot of |T(jω)| versus frequency is called a transmissibility plot. 
 
Consider an example with Q = 10 and fn =1 Hz (normalized to 1 Hz): 
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From the plot, what is Q and fn? 
 
What is |T(jω)| at DC? 
 
What is |T(jω)| as f → ∞ Hz? 
 
 

θ(jω) = tanିଵ ൭
ଶ఍ቀ

ಡ

ഘ೙
ቁ

య

ଵିቀ
ಡ

ഘ೙
ቁ

మ
ାቀ

మഅಡ

ഘ೙
ቁ

మ൱ →θ(jω)|ఠୀఠ೙
= tanିଵ(𝑄) 

 
 Q = 1 → θ(jω)|ఠୀఠ೙

= 45௢ 
 
 Q = 1000 → θ(jω)|ఠୀఠ೙

= 89.94௢ → approaches 90o 
 
Also: θ(jω)|ఠୀ଴ = 0௢ 
 
And: θ(jω)|ఠ→ஶ = 90௢ 
 



Lecture 9/03/24 

11 
 

So what is Q?  Q is a ratio of the energy stored in an oscillating system 
compared to the energy lost. 
 
MEMS devices usually have a high Q (typically 25 to 1000s) 
 
The zero in the numerator of T(s), 𝑠 = −

ఠ೙

ଶ఍
, results in some interesting 

properties: 
 

1) For ω << ωn,  |T(jω)| ≈ 1, and |𝑇(𝑗𝜔)|ఠୀ଴ = 1. 
 

2) For ω > ωn, the stopband attenuation varies with Q: 
 

For Q = 1: attenuation from 2ωn to 20ωn is 21.85 dB ~ that of 
1st order system. 

 
For Q = 10: attenuation from 2ωn to 20ωn is 35.64 dB. 
 
For Q = 1000: attenuation from 2ωn to 20ωn is 42.48 dB         
~ that of 2nd order system. 
 

3) |T(jω)| > 1 at ωn for any value of Q. 
 

4) For Q ≥ 5: |𝑇(𝑗𝜔)|ఠୀఠ೙
≈ 𝑄.  Therefore, we can read Q and fn off 

of a transmissibility plot if Q ≥ 5. 
 

5) [|T(jω)|] = μm/μm, m/m, etc.: i.e. dimensionless. 
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The Importance of Transmissibility 
 

1. The input to a MEMS sensor might be a time dependent function of 
displacement, such as acceleration.  Transmissibility helps us 
predict the device’s response. 
 

2. Microstructures can be sensitive to external mechanical noise: 
mechanical vibrations or acoustic energy present in the operating 
environment.  Transmissibility reveals the susceptibility at different 
frequencies. 
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3. Often, the relative distance or velocity between the proof mass and 
the frame is an important parameter in a sensor: T(jω) gives us the 
relevant system dynamics information. 
 

4. |𝑇(𝑗𝜔)|ఠୀఠ೙
 shows that the MEMS device performs like a 

mechanical amplifier at that frequency, where Q is the gain between 
the input displacement of the frame and the output displacement of 
the proof mass (for Q ≥ 5). 

 
 
Reasonable Answers with MEMS Problems 
 
Always think about your numerical answers to see if they are reasonable.   
 

1) Reasonable mass 
 
Consider a “large” Si chip for a MEMS device: 1 cm x 1 cm x 500 μm. 
 
Since δSi = 2.3 g/cm3, the entire chip can only have a mass of 115 mg. 
 
Mass of the proof mass << 115 mg. 
 
 

2) Reasonable natural frequency 
 
ωn = 2πfn → fn is usually in the audio range: 20 Hz to 20 kHz. 
 
 

3) Reasonable proof mass displacements 
 
Reasonable proof mass displacements << chip width for lateral motion or 
<< chip thickness for vertical motion: 0.1 to 10 µm is reasonable. 
 
Note: displacements cannot exceed gap distances! 
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4) Reasonable capacitance values 
 
Reasonable MEMS capacitors ~ 1 pF: 10 pF → a really large MEMS cap 
 
Note: MEMS associated capacitances can be much smaller than this, even 
less than 1 fF (femto Farad: 1x10-15 F), particularly if you are considering 
a change in capacitance. 
 
 

5) Reasonable voltages and currents 
 
Reasonable voltages can be up to a few 100 V. 
 
What is the approximated current from continuously fully charging and 
discharging a 10 pF MEMS capacitor with 100 V at 20 kHz: 
 

Let 𝐼 =
ௗொ

ௗ௧
≈ 𝑓𝐶𝑉 = 20,000 ∗ 10𝑋10ିଵଶ ∗ 100 = 20𝜇𝐴 << 1A. 

 
Example unreasonable answers to MEMS problems: 
 1 m proof mass displacement 
 10 kg proof mass 
 V = 10,000 V 
 I = 10 A 
 Fn = 2 MHz 
 C = 10 µF 
 


