Review of Second Order Systems

1. Consider
$$
G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}
$$

DC Gain:
$$
G(s)|_{s=0} = \frac{\omega_n^2}{\omega_n^2} = 1
$$

High Frequency Response: $G(s)|_{s\to\infty} = \frac{\omega_n^2}{\omega_1^2 + 27\omega_0^2}$ $\frac{\omega_n^2}{\omega^2 + 2\zeta\omega_{n\infty} + \omega_n^2} = 0$

Therefore, $G(s) \rightarrow low$ pass response

2. Unit Step Response

Unit step function, $c(t) = u(t) \rightarrow C(s) = \frac{1}{s}$ $\frac{1}{s}$, is our input signal

Output signal is $r(t)$, also $R(s)$

$$
R(s) = C(s)G(s) = \frac{1}{s} \left[\frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \right]
$$

$$
r(t) = 1 - \left(\frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \right) \sin\left(\omega_n \sqrt{1 - \zeta^2} t + \theta\right)
$$

$$
\theta = \tan^{-1} \left(\frac{1 - \zeta^2}{\zeta^2} \right)
$$

r(t) has a steady state response (SR) and a transient response (TR) Therefore, $r(t) = SR + TR = 1 + [TR \ term] |_{\zeta-dependent}$ If $\zeta = 0$: undamped response: $r(t) = 1 - \sin(\omega_n t)$

- If $0 < \zeta < 1$: underdamped response: r(t) is a damped sinusoid
- If $\zeta = 1$: response is critically damped: no oscillation in r(t)
- If $\zeta > 1$: response is overdamped: r(t) is a weighted sum of two exponential functions

$$
r(t) = 1 + k_1 e^{-t/\tau_1} + k_2 e^{-t/\tau_2}
$$

See the chart below:

Figure 4.3 Step response for second order system (4-28).

Note: ζ = 0.707 is often used in control systems, since it has a fast response time with only a little overshoot and oscillation

3. Frequency Response of G(s)

See the chart below:

Figure 4.11 Frequency response of second order system (4-50).

Observation about the chart:

- The response is low pass
- For ζ < 0.707: a resonant frequency peak occurs at ω_r , where:

$$
\omega_r = \omega_n \sqrt{1 - 2\zeta^2}
$$

- For $\zeta > 0.707$: no resonant frequency peak occurs
- For $\zeta = 0.707$: called the Maximally Flat Response, no resonant peak occurs. The 3 dB bandwidth = ω_n .
- 4. Second Order System Types (Electronic Filters)
- a. Low Pass Filter

$$
G(s) = \frac{n_0}{s^2 + 2\zeta \omega_n s + \omega_n^2} \to \text{no numerator zeros}
$$

b. High Pass Filter

$$
G(s) = \frac{n_2 s^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \to 2
$$
 numerator zeros at the s-plane origin

c. Band Pass Filter

 $G(s) = \frac{n_1 s}{s^2 + 354s}$ $\frac{n_1 s}{s^2 + 2\zeta \omega_n s + \omega_n^2} \rightarrow 1$ numerator zero at the s-plane origin

d. Notch Filter

 $G(s) = \frac{n_2(s^2 + \omega_n^2)}{s_1^2 + s_2^2}$ $\frac{n_2(s + \omega_n)}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ \rightarrow numerator zeros on the s-plane imaginary axis at $s = \pm i\omega_n$

Example filter responses:

Fig. 14.2 Second-order filter responses.

System Dynamics with Damping Included

 $F_1 + F_2 + F_3 = 0 \rightarrow m\ddot{x} + c\dot{x} + kx = 0$ Note: using x or y for displacement changes nothing.

Let's rewrite the equation as: $\ddot{x} + \frac{c}{m}$ $\frac{c}{m}\dot{x} + \frac{k}{m}$ $\frac{k}{m}x = 0$

Use $\omega_n = \sqrt{\frac{k}{m}}$ $\frac{\kappa}{m}$ ≡ natural frequency

 ζ = damping ratio and Q = mechanical quality factor, where:

 \mathcal{C}_{0} $\frac{c}{m} = 2\zeta \omega_n = \frac{\omega_n}{Q}$ $\frac{\partial n}{\partial q} \to Q = \frac{1}{2\zeta}$: High Q = low damping

∴ $\dot{x} + 2\zeta \omega_n \dot{x} + \omega_n^2 x = 0$: another form of our system differential EQ.

Let's apply an external force, $f(t)$, to our MEMS device:

Now: $m\ddot{x} + c\dot{x} + kx = f(t)$

Using Laplace transforms: $ms^2X(s) + csX(s) + kX(s) = F(s)$

Or:
$$
X(s)[ms^2 + cs + k] = F(s)
$$

We can define a mechanical transfer function: $T(s)$, where:

$$
T(s) = \frac{X(s)}{F(s)} = \frac{1}{ms^2 + cs + k} = \frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}
$$

So what does this mean?

At DC, f(t) would be a constant force producing a displacement of the proof mass: $x = \frac{f}{l}$ \boldsymbol{k}

At AC, f(t) is a sinusoidal force causing the proof mass to oscillate back and forth at a frequency, f, (i.e. it vibrates).

T(s) is a second order function with a low pass frequency response.

Therefore, our spring-mass-damper is a mechanical $2nd$ order low pass filter that filters mechanical vibrations.

If our device has very low damping (high Q), which is very common for MEMS devices, it will have a mechanical gain near f_n (small force: large proof mass motion in the vicinity of f_n).

Transmissibility

Consider this model for our MEMS device:

It is often difficult to apply a specific force to the proof mass.

Therefore, consider this arrangement for our SMD system:

"SMD" = "Spring-Mass-Damper"

Define: $y(t) = input displacement to the frame$ $x(t)$ = output displacement of the proof mass

It is not difficult to apply an exact displacement to the frame (outer part of the chip).

Note: $x(t) = x_0 \sin(\omega t) \rightarrow$ sinusoidal time varying displacement \therefore $\dot{x}(t) = \omega x_0 \cos(\omega t) \rightarrow$ velocity ∴ $\ddot{x}(t) = -\omega^2 x_o \sin(\omega t) \rightarrow \text{acceleration}$

Therefore, our system dynamics differential equation becomes:

 $F_1 + F_D + F_S = 0$

$$
m\ddot{x} + c(\dot{x} - \dot{y}) + k(x - y) = 0 \rightarrow \text{SDEQ}
$$

Note: $(x - y) > 0 \rightarrow$ spring in compression $(x - y) < 0 \rightarrow$ spring in tension

Take the Laplace transform of the SDEQ

 $ms²X(s) + cs(X(s) - Y(s)) + k(X(s) - Y(s)) = 0$

$$
\therefore X(s)[ms^2 + cs + k] = Y(s)[cs + k]
$$

Yielding: $T(s) = \frac{X(s)}{Y(s)} = \frac{cs + k}{ms^2 + cs + k} = \frac{2\zeta\omega_n s + \omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

Observe that there is one zero in the numerator at $s = -\frac{\omega_n}{2\zeta}$, on the real axis in the s-plane. This is different from the electronic filters we discussed.

 $T(j\omega) = |T(j\omega)| |\theta(j\omega)|$

 $|T(j\omega)| \equiv$ Transmissibility

$$
|T(j\omega)| = \sqrt{\frac{1 + \left(\frac{2\zeta\omega}{\omega_n}\right)^2}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(\frac{2\zeta\omega}{\omega_n}\right)^2}} = \sqrt{\frac{1 + \left(\frac{\omega}{Q\omega_n}\right)^2}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(\frac{\omega}{Q\omega_n}\right)^2}}
$$
\n
$$
|T(j\omega)|_{\omega = \omega_n} = \sqrt{Q^2 - 1}
$$

For $Q \gg 1 \rightarrow |T(j\omega)|_{\omega=\omega_n} \approx Q$ and $\omega_r \approx \omega_n$

Keep in mind that for $Q > \frac{1}{2} \rightarrow$ underdamped condition (i.e. it rings)

So, for $Q \gg 1$, the system is highly underdamped, which is usually the case for MEMS devices.

A plot of $|T(j\omega)|$ versus frequency is called a transmissibility plot.

Consider an example with $Q = 10$ and $f_n = 1$ Hz (normalized to 1 Hz):

From the plot, what is Q and f_n ?

What is $|T(j\omega)|$ at DC?

What is $|T(j\omega)|$ as $f \rightarrow \infty$ Hz?

$$
\theta(\mathbf{j}\omega) = \tan^{-1}\left(\frac{2\zeta(\frac{\omega}{\omega_n})^3}{1 - (\frac{\omega}{\omega_n})^2 + (\frac{2\zeta\omega}{\omega_n})^2}\right) \to \theta(\mathbf{j}\omega)|_{\omega = \omega_n} = \tan^{-1}(Q)
$$

$$
Q = 1 \to \theta(\mathbf{j}\omega)|_{\omega = \omega_n} = 45^o
$$

$$
Q = 1000 \to \theta(\mathbf{j}\omega)|_{\omega = \omega_n} = 89.94^o \to \text{approaches } 90^\circ
$$

Also: $\theta(j\omega)|_{\omega=0} = 0^{\circ}$ And: $\theta(j\omega)|_{\omega\to\infty} = 90^{\circ}$

So what is Q? Q is a ratio of the energy stored in an oscillating system compared to the energy lost.

MEMS devices usually have a high Q (typically 25 to 1000s)

The zero in the numerator of T(s), $s = -\frac{\omega_n}{2\zeta}$, results in some interesting properties:

- 1) For $\omega \ll \omega_n$, $|T(j\omega)| \approx 1$, and $|T(j\omega)|_{\omega=0} = 1$.
- 2) For $\omega > \omega_n$, the stopband attenuation varies with Q:

For Q = 1: attenuation from $2\omega_n$ to $20\omega_n$ is 21.85 dB ~ that of 1 st order system.

For $Q = 10$: attenuation from $2\omega_n$ to $20\omega_n$ is 35.64 dB.

For $Q = 1000$: attenuation from $2\omega_n$ to $20\omega_n$ is 42.48 dB \sim that of 2nd order system.

- 3) $|T(j\omega)| > 1$ at ω_n for any value of Q.
- 4) For $Q \ge 5$: $|T(j\omega)|_{\omega=\omega_n} \approx Q$. Therefore, we can read Q and f_n off of a transmissibility plot if $Q \geq 5$.
- 5) $[|T(jω)|] = \mu m/\mu m$, m/m, etc.: i.e. dimensionless.

The Importance of Transmissibility

- 1. The input to a MEMS sensor might be a time dependent function of displacement, such as acceleration. Transmissibility helps us predict the device's response.
- 2. Microstructures can be sensitive to external mechanical noise: mechanical vibrations or acoustic energy present in the operating environment. Transmissibility reveals the susceptibility at different frequencies.
- 3. Often, the relative distance or velocity between the proof mass and the frame is an important parameter in a sensor: $T(i\omega)$ gives us the relevant system dynamics information.
- 4. $|T(j\omega)|_{\omega=\omega_n}$ shows that the MEMS device performs like a mechanical amplifier at that frequency, where Q is the gain between the input displacement of the frame and the output displacement of the proof mass (for $Q \ge 5$).

Reasonable Answers with MEMS Problems

Always think about your numerical answers to see if they are reasonable.

1) Reasonable mass

Consider a "large" Si chip for a MEMS device: 1 cm x 1 cm x 500 μm.

Since $\delta_{\text{Si}} = 2.3$ g/cm³, the entire chip can only have a mass of 115 mg.

Mass of the proof mass << 115 mg.

2) Reasonable natural frequency

 $\omega_n = 2\pi f_n \rightarrow f_n$ is usually in the audio range: 20 Hz to 20 kHz.

3) Reasonable proof mass displacements

Reasonable proof mass displacements << chip width for lateral motion or $<<$ chip thickness for vertical motion: 0.1 to 10 μ m is reasonable.

Note: displacements cannot exceed gap distances!

4) Reasonable capacitance values

Reasonable MEMS capacitors ~ 1 pF: 10 pF \rightarrow a really large MEMS cap

Note: MEMS associated capacitances can be much smaller than this, even less than 1 fF (femto Farad: $1x10^{-15}$ F), particularly if you are considering a change in capacitance.

5) Reasonable voltages and currents

Reasonable voltages can be up to a few 100 V.

What is the approximated current from continuously fully charging and discharging a 10 pF MEMS capacitor with 100 V at 20 kHz:

Let
$$
I = \frac{dQ}{dt} \approx fCV = 20,000 * 10X10^{-12} * 100 = 20\mu A \ll 1
$$
A.

Example unreasonable answers to MEMS problems:

 1 m proof mass displacement 10 kg proof mass $V = 10,000 V$ $I = 10 A$ $F_n = 2 MHz$ $C = 10 \mu F$