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Other Spring (Suspension System) Considerations, Continued 
 
For statically indeterminate suspension systems (2 or more beams that 
deform by both bending and in tension/compression) use this 
approximation for the system spring constant: 
 

𝑘 ≈
𝑁

𝑁

𝐸𝑤𝑡ଷ

𝐿ଷ
 

 
Where NLeg = # legs or spring elements 
 
and NZig = # cutbacks (straight beam = 1, folded beam = 2, etc.) 

 
 Note: this CANNOT be used with the simple cantilever: 
 

For the simple cantilever: 𝑘 =
ா௪௧య

ସయ
 → the multi-beam suspension 

system is stiffer. 
 
Example multi-beam suspension systems: 
 

 
 
2 beams: NLeg = 2, NZig = 1 
 

Therefore 𝑘 ≈
ଶா௪௧య

య
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4 beams: NLeg = 4, NZig = 1 
 

Therefore 𝑘 ≈
ସா௪௧య

య
 

 
 

 
 
8 beams: NLeg = 8, NZig = 1 
 

Therefore 𝑘 ≈
଼ா௪௧య

య
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Other Common MEMS Suspension Systems 
 

 
Called the Hammock Flexure 
 

 
Called the Folded Flexure (has two additional rigid sections) 
 

 
Called the Crab Leg Flexure 
 
4 spring elements with two foldbacks 
 
NLeg = 4 and NZig = 2 
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Therefore 𝑘 ≈
ସா௪௧య

ଶయ
=

ଶா௪௧య

య
 

 
Note: this design could move in-plane, out-of-plane, or torsionally.  
Each of these “modes” would have a different spring constant and 
therefore a different natural frequency. 
 
 
Optimizing MEMS Suspension System Layout and Fabrication 
 
Consider this MEMS suspension system design: 
 

 
 
There is a lot of space (or rather, volume of Si) that is wasted between the 
spring elements.  As shown, it was removed by etching, which is an 
expensive process.  It is desirable to minimize that amount of bulk Si that 
must be etched.  Etching is expensive.  So, consider this design: 
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Here, only a small amount of Si around the spring elements and the proof 
mass have been etched, which reduces fabrication costs.  However, there 
is a lot of unused chip “real estate.”  We want to minimize unused chip 
real estate to minimize chip size and to therefore maximize the number of 
chips we can manufacture on a Si wafer, which minimizes chip cost.  So 
consider this design: 
 

 
 
By wrapping the spring elements around the proof mass, we have 
minimized unused chip real estate and therefore chip size.  However, there 
is always the Law of Unintended Consequences: the proof mass now 
rotates when it moves in and out of plane.  Depending on the application, 
that might be a problem. 
 
The Law of Unintended Consequences → job security for the engineer… 
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Vibration modes 
 
Consider the MEMS cantilever spring with attached proof mass: 
 

 
 

In the y-direction: L, w = a, t = b → 𝑘௬ =
ாయ

ସయ
 , and 𝜔௬ = ට




 

In the z-direction: L, w = b, t = a → 𝑘௭ =
ாయ

ସయ
 , and 𝜔௭ = ට




 

If a = b → 𝜔௬ = 𝜔௭ 
 

If a = 2b → 𝑘௬ =
ாଶర

ସయ
 and 𝑘௭ =

ா଼ర

ସయ
 → 𝜔௭ = 2𝜔௬  

 
Therefore, it is stiffer in z than in y: motion in the z-direction (i.e. ωnz) is 
a higher mode. 
 
Higher modes of structures can be useful or problematic, depending on 
the application.  Hand calculating higher modes is time consuming. 
 
Finite Element Analysis (FEA) CAD tools can be used to model the 
structure and estimate the various vibration modes. 
 
 
FEA CAD tool example: 



Lecture 8/29/24 

7 
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The natural frequency stays the same or goes up with each higher 
vibration mode. 
 
Since, in reality, no elements are actually rigid, FEA CAD tools will find 
vibration modes that the simple spring-mass model does not predict. 
 
Since spring-mass systems operate in the “real world”, where there is 
often little or no environmental mechanical energy above the audio 
frequency range (~ 20 kHz) in most applications, vibration modes above 
about 20 kHz, can usually be ignored. 
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More MEMS suspension system notes 
 
1. Consider the crab leg suspension system below: 
 

 
 
L for each spring member is the length along its center line. 
 
2. Typically, a lumped model approach is used to model the system: 

 
- Proof mass → completely rigid, with a uniform density 

 
- Springs → no mass 

 
However, if the springs are large compared to the proof mass, their mass 
cannot be ignored.  To account for the springs’ mass when the springs are 
large, 1/3 of the springs’ mass may be used with the proof mass: 
 
 𝑚௧ = 𝑚 +

𝑚௦
3ൗ  

 
This yields a better approximation for total mass than just the mass 
of the proof mass alone.   

 
Note: for class assignments, ignore the mass of the springs unless 
explicitly told to include it. 
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Damping 
 
All physical systems are lossy or dissipative (i.e. they have energy loss 
mechanisms). 
 
Circuit example: 
 

 
 
RL represents the resistance of the wire used to make L. 
 
RC represents the leakage path through C. 
 
In mechanical systems, energy losses are modelled by a Damping 
Coefficient, c. 
 
[c] = Kg/s 
 

Damping Force ≡ 𝐹 = 𝑐𝑣 = 𝑐
ௗ௬

ௗ௧
= 𝑐�̇� 

 
In the macro word (our world), friction is often the most important 
mechanical energy loss mechanism. 
 
In the micro world, there are both internal and external energy loss 
mechanisms to consider: 
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Internal Sources 
 

1) Thermoelastic Damping: an internal coupling of mechanical 
stress/strain and heat flow in a material.  Some of the energy used to 
deform the beam gets converted to heat. 

 
External Sources 
 

1) Friction 
 

2) Impact 
 

3) Eddy current damping: a DC magnetic field in a moving conductor 
creates a drag force that resists that motion. 

 
4) Interaction with a surrounding fluid: fluidic damping 

 
a) Squeeze-Film Damping: from the compression of a surrounding 

fluid – the fluid is forced out by compression 
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b. Shear-Resistance Damping: from a resistance to shearing of a fluid 
as an object moves through it 

 

         
 
With microstructures, a gas is the fluid.  Gases are compressible. 

 
c = f(geometry, µ), where µ is gas viscosity. 
 

For gas pressures > few hundred Pa: µ is not proportional to P 
 
 1 atm = 760 Torr = 101,325 Pa 
  
 → 200 Pa ≈ 1.5 Torr   [Mars’ atmosphere ≈ 5.03 Torr] 
 

For pressures < few hundred Pa: 𝜇 ∝ 𝑃 → 𝑐 ∝ 𝑃 
 
 10-3 Torr  (0.133 Pa) ~ low vacuum 
 
 10-7 Torr (1.33x10-5 Pa) ~ high vacuum 
 

When a MEMS device is not packaged in a vacuum environment:                            
fluidic damping >> thermoelastic damping 

 
Therefore, MEMS devices are often sealed in a low pressure inert or 
dry gas to set the damping to a desired range. 
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“Desired Range” → c varies with temperature. 
      → all packages leak: can use “getters” to trap  

  small amounts of gases leaking into the 
  package. 

 
A getter is a material the binds residual gas (typically only certain 
gases) in a vacuum sealed package or a vacuum system in attempt to 
maintain a high vacuum environment.  The getter is often activated by 
heat after package assembly. 

 
Schematic Symbol for Damping: c 
 

 
 
Therefore, our spring-mass-damper system becomes:  
 

 


