### **Terminology**

**Transducer** – A device that converts a nonelectrical quantity into an electrical signal and vice versa

- Sensor A device that converts a nonelectrical quantity into an electrical signal
  - An input transducer
  - Examples: pressure sensor, accelerometer
- Actuator A device that converts an electrical signal into a nonelectrical quantity
  - An output transducer
  - Examples: motor, light bulb, electric heater

Measurand – the quantity being measured by the sensor (such as pressure or temperature)

-----

#### <u>Size</u>

Macro -2mm and larger (us: 6' = 1.8288m) - our world

Meso – 2mm down to 500µm (small fire ant is 2mm long) – her world

**Micro** – 500 $\mu$ m down to 0.5 $\mu$ m (paramecium is 100 $\mu$ m to 300 $\mu$ m long, human red blood cell has a 6 $\mu$ m to 8 $\mu$ m diameter)

 $Nano - 0.5\mu m$  down to 1nm (spherical influenza virus: 50nm to 120nm diameter with 10nm to 14nm spikes on surface)

Human Hair: ~100µm diameter

Modern Transistor: <100nm dimensions (TSMC has a 5 nm process)

MEMS: acronym for "Microelectromechanical Systems"

<u>Definition</u>: Any device or system partially or fully manufactured using microfabrication techniques

Microsensor: a sensor with at least one sub-mm physical dimension

### **MEMS** Characteristics

- (1) Typically based around a silicon substrate
- (2) Typically use batch fabrication processing borrowed from microelectronics fabrication technology

Batch Fabrication: many devices fabricated in parallel ■ Reduces Cost per Device

- (3) Sometimes compatible with microelectronics fabrication
- (4) But often <u>not</u> compatible with microelectronics fabrication

### **Sensor and Sensing Characteristics**

- (1) Accuracy how correct the sensor readings are
- (2) Precision the resolution of the sensor
- (3) Range defines the minimum and maximum measurand levels that can be sensed
- (4) Minimum sampling rate must be at least twice the highest frequency present in the data to avoid aliasing
- (5) Minimum sample collection period must be long enough to capture any trends present in the data (see example on next page)



http://www.longrangeweather.com/global temperatures.htm

#### **Statistics of Sensor Data**

- (1) Average (mean) sum total of the values divided by the number of values of the data set
- (2) Median the middle value of the data set. Same number of data points above and below the median.
- (3) Standard Deviation ( $\sigma$ ) a measure of the amount of variation in a set of data values. 68.27% of the data set lies within  $\pm 1 \sigma$ . 95.4% within  $\pm 2 \sigma$ .



Symmetrical Distribution Average = 70 F Median = 70 F  $\sigma = 10.2$  F



Average = 70 F Median = 70 F  $\sigma = 13.2$  F



Skewed Distribution (most data points are below the average) Average = 71 F Median = 70 F  $\sigma$  = 14.1 F

Note: in the case above, you are more likely to have data points below the average: this is then the "normal" case. But you wouldn't know that from just comparing data to the average value...

### **Scaling**

The relative importance of physical quantities and forces varies with size

### **Dimensions:**

- Length:  $L \propto L$
- Surface area:  $A \propto L^2$
- Volume:  $V \propto L^3$

Therefore physical quantities proportional to volume decrease faster than quantities proportional to length as size is reduced

Example: a 50% reduction in x, y, z:  $L_{new} = 1/2 L_{old}$  $V_{new} = 1/8 V_{old}$ 

# Comparison of Macro and Micro Worlds:

# <u>Macro World</u>

- Inertial forces important
- Electromagnetic actuators more efficient
- Responds slowly to environmental temp change
- Fluidic forces less important

# **Examples of Microsensors:**

Mechanical

- flow rate
- proximity
- stress/strain
- pressure
- acceleration
- angular rate (gyroscope)

Thermal

- PTAT
- thermistor
- thermocouple

Chemical

- humidity
- gas detection
- moisture content

# Micro World

- Inertial forces less important
- Electrostatic actuators more efficient
- Responds quickly to environmental temp change
- Fluidic forces important
- Friction, Van der Waals forces, capillary action important
- Acoustic
  - microphone
- Radiation
  - micro-antenna
  - photodetectors
  - photovoltaic
  - x-ray
  - magnetic field
  - electric field
- Biological
  - DNA analysis
  - contagion (E. coli, anthrax, Covid...)

# **Introduction to Microfabrication**

Fabrication processes used to fabricate integrated circuits and most MEMS devices

For a more detailed study of microfabrication:

- (1) ELEC 5730/6730 Microelectronic Fabrication
- (2) ELEC 5820/6820 MEMS

<u>Micromachining</u>: A term used to describe the process of fabricating MEMS or micromachined devices

### Silicon (Si)

The base material for microfabrication: <u>Substrate</u>

Si is the most common substrate material

Si: hard, brittle semiconductor material

Single crystal Si is grown into ingots and sawn/polished to produce thin wafers – used as substrates

- (1) Example Si wafer: 100mm diameter and 500µm thick
- (2) Diamond crystal structure, different crystalline planes: (100), (110), (111): with different properties
- (3) Can be doped n- or p-type: can be high or low resistivity

-----

### **Other Materials in Si Based MEMS:**

- SiO<sub>2</sub>: grown onto exposed Si though a process called <u>oxidation</u> Typically less than 1µm thick
- (2) Polysilicon: polycrystalline Si deposited onto a substrate Up to a few μm thick
- (3) Metallization: deposited layers or "films" of metal (Al, Ti, Au, Cr...)

Thin films: up to few µm thick

<u>Thick films</u>: greater thicknesses (up to 100s of µm thick)

(4) **Non-metallic layers:** Silicon nitride (SiN) Various polymers Diamond coatings Epoxies

\_\_\_\_\_

### Materials in Non-Si Based MEMS:

- (1) SiC (silicon carbide)
- (2) Diamond
- (3) Glasses
- (4) Ceramics
- (5) Polymers / plastics
- (6) PCB laminates
- (7) Metals
- (8) 3D printed materials

-----

### **<u>2 Basic Processing Types:</u>**

- (1) <u>Additive Process</u>: The deposition of a layer or volume of a material
- (2) <u>Subtractive Process</u>: The removal of some amount of a material

# **Basic Microfabrication Processing Terms**

**<u>Patterning</u>**: The process of transferring a designed pattern into a physical layer

<u>Photolithography</u>: A process of patterning a light-sensitive organic layer called <u>photoresist</u> (PR)

<u>Photolithography mask</u>: a transparent glass plate with an opaque pattern (plated Cr) on one side that the designer desires to transfer to the substrate or thin layer

# **Photolithography Process**

- (1) Clean wafer
- (2) Spin coat on a uniform layer of PR
- (3) "Soft bake" to dry the PR
- (4) Align the photolithography mask to the wafer and place it in contact with the PR layer using a mask aligner
- (5) Expose it to UV light for a set time (only areas not covered by the Cr pattern are exposed
- (6) Develop the PR in a liquid developer
  Exposed PR removed "positive PR"
  Unexposed PR removed "negative PR"
- (7) "Hard Bake" to harden the remaining PR

# After Photolithography

- (1) Affect the exposed layer beneath the PR
- (2) Remove the remaining PR (solvents, O<sub>2</sub> plasma "<u>ashing</u>")

**Etching:** the selective removal of a material

<u>Selectivity</u>: The properties of an etchant with regard to what it will and will not etch. Typically want a high selectivity.

<u>**PR Etch Mask:**</u> A patterned layer of PR used to only expose some areas for etching

**Isotropic Etch:** Equal etching effect in all directions

Anisotropic Etch: Unequal etching effect in different directions

<u>Undercutting</u>: Where the etch process undercuts the PR or other etch mask



There are <u>no</u> purely anisotropic etch processes.

Aspect Ratio: Ratio of depth to width of an etched feature. Example: 10:1 - 10µm down, 1µm over