Lecture 11/7/24
Inertial Sensors (MEMS Gyroscopes)
From last time, the equations of motion simplified to:
mx + cx + kx = A,sin (w,t) (1)
my+cy+ky+2mQx=0 (2)
Clearly, Qk and motion along the x-axis produces corresponding motion
along the y-axis {useful if x is consistent (periodic and known)}.
1) Solve for x(t) in steady state
We will start by assuming a solution of the form:
x(t) = X cos (wyt)
Then: x(t) = =X w,sin(w,t)
And: ¥(t) = —X w2cos (wyt)
Therefore mX + cx + kx = A,sin (w,t) becomes:
—mX w2 cos(w,t) — cXgw,sin(w,t) + kX cos (w,t) = A,sin (w,t)
Equate cos() and sin() terms:
(1) cos() terms:
—mX w2 cos(w,t) + kX cos (w,t) =0

Reduces to: kX; = mX w2
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And finally to: w2 = % — true but not helpful.

(2) sin() terms:
—cXgwysin(wyt) = A,sin (w,t)
—Ay

Reduces to: X; = .
n

Therefore: x(t) = C_wﬁ cos (wpt)

Then: x(t) = —X w,sin(w,t) = A—C"sin(a)nt)

Fx produces this motion of m along the x-axis: x(t) = ;wﬂ cos (wpt).
n

Observe that as c¢ increases: Q decreases and the amplitude of x(t)

decreases.
2) Solve for the steady state motion of y(t)

From EQ 2): my +cy + ky + 2mQx =0

Which can be rewritten as: my + cy + ky = —2mQx

Plugging in for x:

A
my +cy+ ky = —ZmQszin(wnt) = Aysin(wyt)

Where: 4, = —2m{) A—cx

Let’s assume a solution for y(t):
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y(t) = Yscos (wnt)

Then: y(t) = =Y w,sin(w,t)

And: j(t) = =Y w2cos (w,t)

Therefore: my + cy + ky = A, sin(w,t) becomes:

—mYwf; cos(w,t) — cYgw,sin(wyt) + kYgcos (wpt) = Aysin (wpt)
Equating the sin() terms:

—cYawysin(wyt) = Ay sin (w,t)

Ay _ 2mO4x. NOTE: use this for HW#9 probs 9&10

Therefore: Yy = — >
Cwn C Wwn

So: y(t) = Zcrznj" Q cos(w,t) = Gy Qcos(w,t)
Where: G; = izzlx

With the resulting motion along the y-axis: measure y(t), multiply that
measurement by A cos(w,t) and then LPF the product, which results in a
DC signal proportional to Q.

3) Realizing a possible MEMS implementation

a. Suspension system
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First, we need a suspension system that allows 2-D translational motion
of the proof mass. So, consider this:
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) AEW, t3 k
Given that: k, = —* and w,, = |—=
X 3 nx
Ly my
. AEW,t3 k
While: k, = —3"% and wp,y, = [
Ly my

Select w’s, L’s, t’s, and m’s so that wyy = wyy, = wy,.
Also try to make m, ~ m,, because % = % and ¢, = ¢, most likely.

**More symmetric suspension systems are typically used, but the concept
presented here is valid for discussion purposes.**

a. Generating F

We need an actuator to generate F= A,sin (wgt)l. Piezoelectric and
electrostatic actuators have been used for this purpose.

Consider a comb drive actuator (CDA):
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The CDA can only pull m in one direction. So consider this:
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T
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With 2 CDA’s and alternate Vi and V2 (180° out of phase), m can be

actuated in opposite directions:
Vi

Ty iy R

4

Ay
U(‘ .’. A

V2 [) ol | 9
Note: V; = Vpe + Vyc cos(wt) + H.O.T.

Then: V2 = VZ, + 2VpcVac cos(wt) + (Vuc cos(wt))? + H.0.T.

Notice that there is a force component at ®. If Q 1s high enough, and V;
and V2 state-change pairs occur at w = w,,, then x(t) is “nearly” sinusoidal
even though Fx is not. The higher order terms are present, though, and
will affect the noise floor of the sensor: high precision MEMS gyroscopes
would use a true sinusoidal Fx producing actuator.

Note: The CDA suspension system will have to be designed to allow some
(ideally small) motion to occur orthogonal to x(t), due to the Coriolis
acceleration, unless a y-axis force feedback controller is used to null out
the y-axis motion like a closed-loop accelerometer. However, other types
of electrostatic actuators could be used to avoid this issue.



Lecture 11/7/24

For example, consider this electrostatic tangential actuator:

8} r = |
SUSPCH&EC![} ‘ = 5 !(i\ /J:) _ j ]?\IJ_“[ €, \ f}i‘

" ¥ |
& ) p - A a |
.H ruture £ < £2 } e N
— B
| A A {

SEVO‘{ Uf;}f;x}

This actuator attempts to increase the overlap area. As a tangential
actuator, force is not a function of displacement. Observe that y-axis
motion does not affect the overlap of E; or Eo.

a. Sensing of y(t) motion

Although many techniques are possible, consider this differential comb
structure element:
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All structures are “t” tall (normal to the plane of the paper).
Here, we will define C; and C; between the sides of the movable comb

teeth and the sides of the fixed comb teeth. Capacitance due to the ends
of the teeth 1s not considered here, for simplicity.
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“n” comb teeth elements exist in the full comb structure. Therefore:

1 1
6, = nepertlro - 09 )
1 = NEE(Y, — Ay) P Ax+xo_ o

and

1 1
o= 4. )
) = NnE&Et(Yo + Ay) X, + Ax +x0 _ Ax

If Ax K x,, then:( CE— )zi

Xo+Ax  xo—Ax Xo

2ney et

Let’s let G, = , leading to:

€1 = G2(yo —Ay) and C; =~ G, (¥, + Ay)

2mA,

y(t) = G;Qcos (w,t) {from p. 3 today} where: G; =

cZwn
y(t) is the Ay above, leading to:

C, = G,(y, — GyQcos (wyt)) and

C, = G, (yo + G,Qcos (a)nt))

Let’s interface Ci and C» through their own transimpedance amplifiers
(TTIA’s):
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Therefore, in general from the TIA: V, = —R,, (VbC +C Vb).
However, here Vy is DC. Therefore V, = 0 V/s

So, C; = G;G,w,Qsin (w,t), and

C, = —G,G,w,Qsin (w,t),

Therefore:

Vo1 = —VuRpG1G,w,Qsin (w,t), and

Voo = VR G1Gow, Qsin (wyt),

Let’s define: V, = Vy, — V4

sV, = 2V Ry G1 Gy w, QAsin (wy, t)

If we mix V, with Vxsin(wnt), and LPF to get Vout:

4nmA, e, -tV Vi Ry 0

Vour = VpVeRpG1Grw, ) = >
C4X,

Remember that F = A,sin (wgt)l
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nyBbeoerVp

If the actuator is a CDA, then: A4, = -

Including the equation for Ax, Vour becomes:

dnn, fbmte2e2ViV,V.R, 0
c’x,d

Vour =

Which can be reduced to:
VOUT = KQ
Where Vour is a DC voltage proportional to €.
Observe that K 1s made up of true constants (4, n, nx, €), parameters
dependent of fabrication/packaging/material/temperature tolerances (j3, b,
m, t, &, Ro, ¢, Xo, d), and signals that will be off/noisy (Vp, Vb, Vx). So,
how constant is K really?
Also, a lot of assumptions, approximations, and simplifications went into
deriving K.

1) A real MEMS gyroscope:

Consider this MEMS gyroscope chip fabricated with an SOI process:
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Photograph of a MEMS Gyroscope
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Photo courtesy of Morgan Research Corporation
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