Inertial Sensors (MEMS Gyroscopes)

1) Let's examine the Coriolis force and acceleration

Consider:

Where the position vector is: $\vec{r} = r_x \hat{\iota} + r_y \hat{j}$, and

the velocity vector is: $\vec{V}_r = V_{rx}\hat{\imath} + V_{ry}\hat{\jmath} = \frac{d}{dt}\vec{r}$.

Given that the coordinate system rotates about the z-axis at: $\vec{\Omega}_z = \Omega_z \hat{k} = \dot{\theta}_z \hat{k}$, the object, T, experiences a "virtual force" in the x-y plane due the $\Omega_z \hat{k}$ rotation.

This "virtual force" is the Coriolis force, and it results in a Coriolis acceleration in the rotating x-y plane $\rightarrow \vec{a}_c$.

$$\vec{a}_c = 2\vec{\Omega}_z \times \vec{V}_r = \Omega_z \hat{k} \times (V_{rx}\hat{\imath} + V_{ry}\hat{\jmath}) = 2\Omega_z V_{rx}\hat{\jmath} - 2\Omega_z V_{ry}\hat{\imath},$$

where: $a_{cy} = 2\Omega_z V_{rx}$ and $a_{cx} = -2\Omega_z V_{ry}$.

Observe that $a_{cy} \propto \Omega_z$ multiplied by V_{rx} .

Another way to look at this:

If $\theta \approx 0$ and $\ddot{\theta} \approx 0$, then $\ddot{S} \approx a_{cy} = 2V_{rx}\Omega_z$

If we were technicians, then knowing the \vec{a}_c equation would be sufficient. But we are engineers and we should therefore know more.

2) Review of unit vectors

A unit vector is a normalized vector of length 1.

In Cartesian co-ordinates: 3 unit vectors in the x, y, and z directions:

For the cross product of unit vectors: use the right hand rule:

- (1) $\hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = 0$
- (2) $\hat{\iota} \times \hat{\jmath} = \hat{k}$
 - $\hat{k} \times \hat{\iota} = \hat{j}$
 - $\hat{j} \times \hat{k} = \hat{\iota}$
- (3) $\hat{j} \times \hat{i} = -\hat{k}$ $\hat{k} \times \hat{j} = -\hat{i}$ $\hat{i} \times \hat{k} = -\hat{j}$
- 3) Modeling an SMD in an inertial reference frame

Consider a SMD system in a reference frame, B:

Assume that the mass, m, can only move in the x and y directions with no rotation in B.

Although k_x is not necessarily the same as k_y , let's let $k_x = k_y = k$ for simplicity.

Therefore $\omega_{nx} = \omega_{ny}$ here.

Similarly, c_x is not necessarily the same as c_y , but let's let $c_x = c_y = c$ for simplicity.

4) Modeling an SMD in a rotating inertial reference frame

Let reference frame B be in a fixed reference frame F where B can rotate with respect to F:

X, Y, Z are in $F \rightarrow \hat{I}, \hat{J}, \hat{K}$: unit vectors in F.

x, y, z are in $B \rightarrow \hat{i}, \hat{j}, \hat{k}$: unit vectors in B.

Note: z and Z always point in the same direction.

Let's explore the relationship between B and F:

$$\hat{\imath} = f(\hat{\imath}, \hat{\jmath}) \text{ and } \hat{\jmath} = f(\hat{\imath}, \hat{\jmath})$$

$$\therefore \hat{\imath} = \hat{\imath} \cos(\theta) + \hat{\jmath} \sin(\theta)$$

Note: if $\theta = 0^{\circ} \rightarrow \hat{\imath} = \hat{\imath}$
if $\theta = 90^{\circ} \rightarrow \hat{\imath} = \hat{\jmath}$

$$\therefore \hat{\jmath} = -\hat{\imath} \sin(\theta) + \hat{\jmath} \cos(\theta)$$

Note: if $\theta = 0^{\circ} \rightarrow \hat{\jmath} = \hat{\jmath}$
if $\theta = 90^{\circ} \rightarrow \hat{\jmath} = -\hat{\imath}$
Angular rate: $\dot{\theta} = \frac{d\theta}{dt} = \Omega$
Angular acceleration: $\ddot{\theta} = \frac{d\Omega}{dt} = \alpha$

5) Derivatives of unit vectors

Note:
$$\frac{d}{dt}(\cos(\theta)) = -\dot{\theta}\sin(\theta) = -\Omega\sin(\theta)$$

And: $\frac{d}{dt}(\sin(\theta)) = \dot{\theta}\cos(\theta) = \Omega\cos(\theta)$

With that in mind:

$$\therefore \frac{d}{dt}(\hat{\imath}) = \frac{d}{dt} (\hat{\imath} \cos(\theta) + \hat{\jmath} \sin(\theta))$$

$$= -\hat{\imath} \Omega \sin(\theta) + \hat{\jmath} \Omega \cos(\theta)$$

$$= \Omega (-\hat{\imath} \sin(\theta) + \hat{\jmath} \cos(\theta))$$
But: $\hat{\jmath} = -\hat{\imath} \sin(\theta) + \hat{\jmath} \cos(\theta)$

$$\therefore \frac{d}{dt}(\hat{\imath}) = \Omega \hat{\jmath}$$

$$\therefore \frac{d}{dt}(\hat{\jmath}) = \frac{d}{dt} (-\hat{\imath} \sin(\theta) + \hat{\jmath} \cos(\theta))$$

$$= -\hat{\imath} \Omega \cos(\theta) - \hat{\jmath} \Omega \sin(\theta)$$

$$= -\Omega (\hat{\imath} \cos(\theta) + \hat{\jmath} \sin(\theta))$$

Therefore: $\dot{\hat{i}} = \Omega \hat{j}$ and $\dot{\hat{j}} = -\Omega \hat{i}$

Identities

$$\hat{\imath} = \hat{I}cos(\theta) + \hat{J}sin(\theta)$$
$$\hat{\jmath} = -\hat{I}sin(\theta) + \hat{J}cos(\theta)$$
$$\hat{\imath} = \Omega\hat{\jmath}$$
$$\hat{\jmath} = -\Omega\hat{\imath}$$

Corolis acceleration: \vec{a}_c

where $\vec{a}_c = 2\Omega \dot{x}\hat{j} - 2\Omega \dot{y}\hat{i}$

 \rightarrow motion in one axis (\dot{x} or \dot{y}) plus rotation about z (Ω) results in motion in the opposite x or y axis:

$$\dot{x}\hat{\imath}$$
 and $\Omega \hat{k} \rightarrow 2\Omega \dot{x}\hat{\jmath}$
 $\dot{y}\hat{\jmath}$ and $\Omega \hat{k} \rightarrow -2\Omega \dot{y}\hat{\imath}$

However, higher order terms exist.

Consider the motion of the proof mass:

 $\vec{r} = x\hat{\imath} + y\hat{\jmath} \quad \text{displacement of m}$ $\vec{v} = \dot{\vec{r}} = \dot{x}\hat{\imath} + \dot{y}\hat{\jmath} + x\dot{\imath} + y\dot{\jmath}$ $= \dot{x}\hat{\imath} + \dot{y}\hat{\jmath} + \Omega(x\hat{\jmath} - y\hat{\imath}) \quad \text{velocity of m}$ $\vec{a} = \dot{\hat{v}} = \ddot{x}\hat{\imath} + \ddot{y}\hat{\jmath} + \dot{x}\dot{\imath} + \dot{y}\dot{\jmath} + \dot{\Omega}(x\hat{\jmath} - y\hat{\imath}) + \Omega(\dot{x}\hat{\jmath} - \dot{y}\hat{\imath}) + \Omega(x\dot{\jmath} - y\dot{\imath})$ $= \ddot{x}\hat{\imath} + \ddot{y}\hat{\jmath} + \Omega(\dot{x}\hat{\jmath} - \dot{y}\hat{\imath}) + \alpha(x\hat{\jmath} - y\hat{\imath}) + \Omega(\dot{x}\hat{\jmath} - \dot{y}\hat{\imath}) + \Omega^{2}(-x\hat{\imath} - y\hat{\jmath})$ $= \ddot{x}\hat{\imath} + \ddot{y}\hat{\jmath} + 2\Omega(\dot{x}\hat{\jmath} - \dot{y}\hat{\imath}) + \alpha(x\hat{\jmath} - y\hat{\imath}) - \Omega^{2}(x\hat{\imath} + y\hat{\jmath}) \quad \text{acceleration}$ of m

From this expression for \vec{a} :

 $a_x = \ddot{x} - \alpha y - 2\Omega \dot{y} - \Omega^2 x \quad \text{Acceleration component along x}$ $a_y = \ddot{y} + \alpha x + 2\Omega \dot{x} - \Omega^2 y \quad \text{Acceleration component along y}$

6) System dynamics

Consider this model for the MEMS SMD mechanical system:

 $F_x = A_x \sin(\omega_d t) \rightarrow \text{to force m to oscillate along x-axis (using an actuator)}$

 $F_y = 0 \rightarrow$ no force applied to m along y-axis (with an actuator)

There exists a coupling of the equations of motion:

 $ma_x + c_x \dot{x} + k_x x = F_x \quad (1)$ $ma_y + c_y \dot{y} + k_y y = F_y = 0 \quad (2)$

Expanding these equations:

$$m(\ddot{x} - \alpha y - 2\Omega \dot{y} - \Omega^2 x) + c_x \dot{x} + k_x x = A_x \sin(\omega_d t)$$
(1)
$$m(\ddot{y} + \alpha x + 2\Omega \dot{x} - \Omega^2 y) + c_y \dot{y} + k_y y = 0$$
(2)

We want to solve this set of equations to obtain an expression for y(t). Thankfully, we can make some reasonable simplifying assumptions:

- (1) Let $k_x = k_y = k$
- (2) Let $c_x = c_y = c$

Note: with (1) and (2): $\omega_{nx} = \omega_{ny} = \omega_n$. Real MEMS gyroscopes usually have $\omega_s > \omega_d$: defined as $\omega_{ny} > \omega_{nx}$, where ω_s is in regard to the sense side and ω_d is in regard to the drive side. Having $\omega_s > \omega_d$ yields better stability and a measurable rotation rate bandwidth.

- (3) Assume that the angular acceleration, α , is very slow and can be approximated as $\alpha = 0$ rad/s².
- (4) Assume that the system natural frequency, ω_n , is much greater than Ω , the angular rate being measured. Therefore $\Omega^2 x$ and $\Omega^2 y$ can be approximated by 0.

Example: if
$$f_n = 10$$
 kHz: $\omega_n = 2\pi f_n = 62,831.8$ rad/s
If $\Omega = 300$ °/s = $300(2\pi/360) = 5.24$ rad/s
And $62,831.8 >> 5.24$

Also from EQ 1: $m(\ddot{x} - \alpha y - 2\Omega \dot{y} - \Omega^2 x) + c_x \dot{x} + k_x x = A_x \sin(\omega_d t)$

Examine the "x" terms: $-m\Omega^2 x + k_x x \to m\left(\frac{k_x}{m} - \Omega^2\right) = m(\omega_n^2 - \Omega^2)$

From the Ω and f_n terms above $\rightarrow \omega_n^2 = 3.9 \times 10^9$ rad/s and $\Omega^2 = 27.5$ rad/s. So, $\omega_n^2 - \Omega^2 \approx \omega_n^2$

(5) The amplitude of the motion of m along the x-axis will be tightly controlled as a closed loop resonator.

A feedback control system will adjust $F_x = A_x \sin(\omega_d t)$ to precisely keep the motion along the x-axis exactly as desired. Therefore, we can drop the $a_{cx} = -2\Omega \dot{y}$ term in EQ 1, since the controller will null out its effect.

(6) The
$$\omega_d$$
 from $F_x = A_x \sin(\omega_d t)$ is usually selected so that:
 $\omega_d = \omega_n = \sqrt{\frac{k}{m}}.$

This minimizes the amplitude of F_x required to achieve sufficient motion of m along the x-axis \rightarrow due to high Q.

Therefore, the equations of motion simply to:

 $m\ddot{x} + c\dot{x} + kx = A_x \sin(\omega_n t) \quad (1)$ $m\ddot{y} + c\dot{y} + ky + 2m\Omega\dot{x} = 0 \quad (2)$

Clearly, $\Omega \hat{k}$ and motion along the x-axis produces corresponding motion along the y-axis {useful if \dot{x} is consistent (periodic and known)}.