Lecture 11/5/25
Inertial Sensors (MEMS Gyroscopes)
1) Let’s examine the Coriolis force and acceleration

Consider:

v/
[

Where the position vector is: ¥ = 1,1 + 1§, and

: I . ~d o
the velocity vector is: V. = Vi, i + V.,,j = =T

Given that the coordinate system rotates about the z-axis at:
52 = O,k = 0,k, the object, T, experiences a “virtual force” in the x-y
plane due the ),k rotation.

This “virtual force” 1s the Coriolis force, and it results in a Coriolis
acceleration in the rotating x-y plane — d..

de = 20, XV, = Q. X (el + Vi ) = 2Q, V] — 20, V3 1,
where: ac, = 2Q,V,, and ac, = —20,V;,,.

Observe that a.,, o Q, multiplied by V..

Another way to look at this:
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S=160+710

S=70+70+7r0 +76

=270 + 70 + 16
=2rQ, +70 + ra,
If0 ~0and 6 = 0, then S = Acy = 2Vix L),
If we were technicians, then knowing the d. equation would be sufficient.
But we are engineers and we should therefore know more.

2) Review of unit vectors
A unit vector is a normalized vector of length 1.
In Cartg_sian co-ordinates: 3 unit vectors in the x, y, and z directions:
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For the cross product of unit vectors: use the right hand rule:
(1) ixi=jxj=kxk=0

2) ixj=k

kxi=j
jxk=1
(3) jxi=-k
kxj=-—i
ixk=-j

3) Modeling an SMD in an inertial reference frame

Consider a SMD system in a reference frame, B:
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Assume that the mass, m, can only move in the x and y directions with no
rotation in B.

Although ky is not necessarily the same as ky, let’s let ky = ky = k for
simplicity.

Therefore wnx = wny here.
Similarly, c 1s not necessarily the same as cy, but let’s let cx = ¢y = ¢ for
simplicity.

4) Modeling an SMD in a rotating inertial reference frame

Let reference frame B be in a fixed reference frame F where B can rotate
with respect to F:

F

X,Y,ZareinF — I, J, K: unit vectors in F.

X,y,zarein B — 1, J, k: unit vectors in B.
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Note: z and Z always point in the same direction.

Let’s explore the relationship between B and F:
= f(f,f) and J = f(f,f)

~ 1 =1Icos(8) + Jsin(0)

Note: if @ = 0° > =1
if0 =90°—>i=]
o j = —Isin(8) + fcos(0)

Note: if 6 = 0° - =]

if =90° —j=—T

Angular rate: 6 = % =

aq

Angular acceleration: 6 = it

5) Derivatives of unit vectors
Note: % (cos (8)) = —6 sin(0) = —Qsin (6)
And: % (sin (8)) = 6 cos(8) = Qcos (6)

With that in mind:
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2L @) =L (icos(0) + Jsin(6

- a(1) = a( cos(0) + Jsin(6))
= —[Qsin(0) + fQcos(0)
= Q(—Isin(6) + jcos(6))

But: j = —Isin(0) + Jcos(6)

%(f) — %(—fsin(@) + fcos(0))
= —IQcos(8) — jQsin(6)
= —0(lcos(8) + Jsin(8))
= —QOf

Therefore: i = Qf and j = —

Identities
i =TIcos(8) +fsin(9)

j = —[sin(0) + fcos(6)
i=Qjf
j=-ai

Corolis acceleration: d,

where d, = 20xj — 20Qyi
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— motion in one axis (x or y) plus rotation about z (2) results in motion
in the opposite x or y axis:

xi and Qk — 20x]
yj and Qk — —20yi
However, higher order terms exist.

Consider the motion of the proof mass:

¥ =xi+vyj displacement of m
P=7=xi+y]+xi+yj
=xi+yj+0(xj—yl) velocity of m
d=10=x+yj+xi +y] +02f — yi) + 2] — yi) + 2(xf — yi)
= ¥l + ] + 2] — y) + a(xf — yi) + Q%] — yi) + 2*(—xi — yj)
=¥+ 9] + 20(x] — yi) + a(xf — yi) — Q%(xi + yj)  acceleration
of m

From this expression for d:
a, =% —ay— 20y —N?*x  Acceleration component along x

ay, =y +ax+ 20x — 2y  Acceleration component along y
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6) System dynamics

Consider this model for the MEMS SMD mechanical system:
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E, = A,sin (wgt) — to force m to oscillate along x—axis (using an
actuator)

F, = 0 — no force applied to m along y-axis (with an actuator)
There exists a coupling of the equations of motion:
ma, + c,x +kyx=F (1)

ma, +c,y+k,y=FE =0 (2)

Expanding these equations:
m(x — ay — 20y — 0%x) + ¢, x + kyx = Aysin (wgt) (1)
m@y +ax+20x - 2°y)+c,y+kyy=0 (2

We want to solve this set of equations to obtain an expression for y(t).
Thankfully, we can make some reasonable simplifying assumptions:
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(1) Letky =k, =k
(2) Letcy=cy,=c

Note: with (1) and (2): wpx = wyy = w,. Real MEMS gyroscopes
usually have ws > wq: defined as mny > wnx, Where os 1s in regard to the
sense side and wq 1s in regard to the drive side. Having s > wq yields
better stability and a measurable rotation rate bandwidth.

(3) Assume that the angular acceleration, a, is very slow and can be
approximated as o = 0 rad/s?.

(4) Assume that the system natural frequency, ®,, is much greater
than Q, the angular rate being measured. Therefore 22x and
22y can be approximated by 0.

Example: if f, = 10 kHz: o, = 2nf, = 62,831.8 rad/s
If Q=300 °/s =300(2n/360) = 5.24 rad/s
And 62,831.8 >>5.24

Also from EQ 1: m(¥ — ay — 202y — 2°x) + ¢, x + k,x = A,sin (wyt)
Examine the “x” terms: —m?%x + k,x > m (% - .(22) = m(wz — 0N?%)

From the Q and f, terms above — w2 = 3.9 x 10° rad/s and 2% = 27.5
rad/s. So, w2 — 1? =~ w?

(5) The amplitude of the motion of m along the x-axis will be
tightly controlled as a closed loop resonator.

A feedback control system will adjust F,, = A,.sin (wg4t) to precisely keep
the motion along the x-axis exactly as desired. Therefore, we can drop
the a., = —20y term in EQ 1, since the controller will null out its effect.
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(6) The wq from F, = A,sin (wg4t) 1s usually selected so that:

_ _ k

This minimizes the amplitude of Fy required to achieve sufficient motion
of m along the x-axis — due to high Q.

Therefore, the equations of motion simply to:
mx + cx + kx = A,sin (w,t) (1)
my +cy+ky+2mQx =0 (2)

Clearly, Qk and motion along the x-axis produces corresponding motion
along the y-axis {useful if x is consistent (periodic and known)}.
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