[Back] [PDF

Scheduling Security-Critical Real-Time Applications on Clusters

Tao Xie1    Xiao Qin2

1 Department of Computer Science
   San Diego State University
   San Diego, CA 92182 
2 Department of Computer Science
   New Mexico Institute of Mining and Technology
   801 Leroy Place, Socorro, New Mexico 87801

Security-critical real-time applications such as military aircraft flight control systems have mandatory security requirements in addition to stringent timing constraints. Conventional real-time scheduling algorithms, however, either disregard applications’ security needs and thus expose the applications to security threats, or run applications at inferior security levels without optimizing security performance. In recognition that many applications running on clusters demand both real-time performance and security, we investigate the problem of scheduling a set of independent real-time tasks with various security requirements. We build a security overhead model that can be used to reasonably measure security overheads incurred by the security-critical tasks. Next, we propose a security-aware real-time heuristic strategy for clusters (SAREC), which integrates security requirements into the scheduling for real-time applications on clusters. Further, to evaluate the performance of SAREC, we incorporate the earliest deadline first (EDF) scheduling policy into SAREC to implement a novel security-aware real-time scheduling algorithm (SAEDF). Experimental results from both real-world traces and a real application show that SAEDF significantly improves security over three existing scheduling algorithms (EDF, Least Laxity First, and First Come First Serve) by up to 266.7% while achieving high schedulability.

IEEE Transactions on Computers, Vol. 55, No. 7, pp.864-879, July 2006.