3 Feet Please. It’s the Law.

The City of Auburn passed Ordinance No. 2726 on October 4, 2011 which focused primarily on protecting bicyclists. The new ordinance requires motorists to provide a minimum distance of 3 feet between any motorized vehicle and a bicyclist proceeding in the same direction. The “3-feet rule” was something the Auburn Bicycle Committee felt was needed in order to provide protection to bicyclists and to help educate drivers of the need for a safe buffer when passing.

During the discussion of the ordinance some concerns were noted. Public Safety was concerned that they might have difficulty enforcing the ordinance. They felt that it would be difficult estimating 3 feet when traveling down the roadway. It was also noted that most streets would not allow a motorist to pass with a 3 foot buffer without crossing the double yellow line. However, since bicycles are already legally permitted to ride in the road, the ordinance simply specifies a minimum safe passing distance.

When the ordinance was adopted, there were 18 states that had already passed similar laws including all of the states surrounding Alabama. Therefore, after much discussion, the City Council passed the ordinance noting that the ordinance only emphasized what people should be doing already. In an effort to educate the traveling public of the new ordinance, the Auburn Bicycle Committee purchased and installed signs informing the public of the law to provide a minimum of 3 feet clearance when passing bicyclists. Since the ordinance was passed in Auburn, a similar ordinance has been passed in Mobile and two other states. There is also a push for a similar law at the state level.

The City of Auburn is committed to improving the safety of all citizens regardless of their modes of transportation and actively promotes ways to enhance safety and reduce accidents. More information about laws surrounding motorists, cyclists and pedestrians can be found at www.travelwithcareauburn.com

(Prepared by Brandy Ezelle, Traffic Engineer and Jeff Ramsey, City Engineer and Public Works Director, Auburn, AL June 2012)
Common Characteristics of Modern Roundabouts

For the past ten or twenty years, there has been an increasing use of the term roundabouts as a geometric design feature for local roads, state highways and even the interchanges of controlled-access highways. Traffic engineers, transportation planners, landscape architects, and highway safety professionals have all had their role in determining the applications of this feature. But what are the common characteristics that define a modern roundabout?

Research into seven technical sources published over the past 14 years shows that there are some common characteristics of the modern roundabout as opposed to rotary intersections, community squares, or downtown plazas that are present in many communities. Nine definitions or descriptions of a modern roundabout or a roundabout were found in these publications.

Modern roundabouts have many commonalities. The most frequently occurring characteristic was that the modern roundabout requires entering vehicles to yield to any vehicles present in the circulatory roadway. This term was present in all seven references published over this time period. Some of the references had more than one description or one definition of a roundabout or a modern roundabout. This term was present in eight of the nine descriptions or definitions.

The second most frequently occurring reference was to the roundabout being an intersection. This term was present in seven of the nine descriptions or definitions. Many state statutes will need to have their definitions of an intersection revised to include the circulatory roadway of a modern roundabout. These statutes frequently refer to an intersection as the prolongation of the curb lines or edges of pavements of intersecting roadways. Another definition of an intersection is used for red-light running programs. This definition of the intersection includes the setback to the stop line. This newest definition will not apply to most roundabouts, since they are yield controlled.

The next most re-occurring features was that the roundabout be circular or “generally” circular in shape with geometric features intended to slow traffic. This feature was mentioned in six of the nine descriptions or definitions. Some particular applications have shown a teardrop shape which has benefits when two roundabouts are used as a pair for an interchange or at a pair of adjacent intersections. The methods of slowing traffic range from increased horizontal curvature on the approaches, to narrowing the lane widths on the approaches, and to reduced regulatory speeds in advance of the approaches.

The references reviewed for this material gave the following descriptions or definitions:

In 1998, “Modern Roundabout Practice in the United States” was published as NCHRP Synthesis Report 262 of the Transportation Research Board (TRB). This report notes in its definitions section:

Modern roundabouts are defined by two basic operational and design principles, yield-at-entry and deflection of entering traffic. This deflection was further explained as the entering traffic points towards the central island which deflects vehicles to the right, thus causing low entry speeds.

In 2000, “Roundabouts: An Informational Guide” was published by the Federal Highway Administration (FHWA). This report notes in its defining physical features section:

Roundabouts are circular intersections with specific design and traffic control features. These features include yield control of all entering traffic, channelized approaches, and appropriate geometric curvature to ensure that travel speeds on the circulatory roadway are typically less than 50 km/h (30 mph). Thus roundabouts are a subset of a wide range of circular intersection forms.

In 2007, “Roundabouts in the United States” was published as NCHRP Report 572 of the TRB. This report notes in its introductory section:

Two key characteristics of the modern roundabout include (1) a requirement for entering traffic to yield to circulatory traffic and (2) geometric constraints that slow entering vehicles.

(Continued on next page)
The report also notes that it will refer to modern roundabouts simply as roundabouts.

In 2009, the “Manual on Uniform Traffic Control Devices for Streets and Highways” was published by the FHWA. This book notes in its Definitions section:

Roundabout - a circular intersection with yield control at entry, which permits a vehicle on the circulatory roadway to proceed, and with deflection of the approaching vehicle counter-clockwise around a central island.

In 2010, the “Highway Safety Manual: First Edition” was published by the American Association of State Highway and Transportation Officials (AASHTO). This book notes in its Glossary that a roundabout is:

An unsignalized intersection with a circulatory roadway around a central island with all entering vehicles yielding to the circulating traffic.

In 2010, the “Roundabouts: An Informational Guide: Second Edition” was published as NCHRP Report 672 of the TRB. This report notes definitions and descriptions worth reviewing. In the Glossary are two definitions:

Modern roundabout - a term used to distinguish newer circular intersections conforming to the characteristics of roundabouts from older style rotaries and traffic circles.

Roundabout - an intersection with generally circular shape, yield control of all entering traffic, and geometric curvature and features to induce desirable vehicular speeds.

In its introductory section on types of circular intersections, this second edition of the guide also has the description: Roundabouts are a subset of circular intersections with specific design and traffic control features. These features include yield control of all entering traffic, channelized approaches, and geometric curvature and features to induce desirable vehicular speeds.

In 2011, “A Policy on Geometric Design of Highways and Streets, Sixth Edition” was published by AASHTO. In the chapter on intersections is the description of roundabouts as one of four distinct types of circular intersections:

Roundabouts are circular intersections with specific design and traffic control features that include:

- Yield control for all entering traffic
- Channelized approaches
- Appropriate curvature designed into intersection geometry so that travel speeds on the circulatory roadway are typically less than 50 km/h (30 mph)
- Splitter islands on each leg of the roundabout have multiple roles: separate entering and exiting traffic, deflect and slow entering traffic, and provide a pedestrian refuge. Roundabouts designed in this manner are often referred to as modern roundabouts to distinguish their design and operational characteristics from older rotaries or signalized traffic circles.

In light of this material, a reasonable approach is to consider a roundabout as an intersection having the characteristics of yield on entry, with the intent to slow traffic, and a circular or somewhat circular roadway for circulating traffic in a counter clockwise flow when designed for use in the United States. Any geometric feature which does not meet these criteria should not be considered a roundabout, but the unique application of an intersection designed by an individual.

(Prepared by John R McCarthy, PE, Traffic Engineer III, City of Montgomery, AL)
The Alabama T2 Center congratulates Elmore County Engineer Richie Beyer, P.E., as the new President of the National Association of County Engineers (NACE). Richie, who has been Elmore County Engineer for nine years, served more than four years as Assistant County Engineer in Chambers County and two years in Barbour County. He served two summer internships with Coffee County. Richie currently serves as a Member of the Alabama T2 Steering Committee.

Richie was installed as President at the NACE 2012 Management and Technical Conference in Lexington, KY on April 1-5. In attendance were approximately 400 delegates and speakers, 200 exhibit representatives, and over 100 guests.

With an Elmore County population of approximately 80,000, Richie Beyer is responsible for 800 miles of paved roads, 200 miles of unpaved roads, and 127 bridge structures. He earned his B.S. in Civil Engineering from Florida State University and is a registered Professional Engineer in Alabama, Florida and Georgia. He served on the Board of Directors for the Association of County Engineers of Alabama from 2003-2009 holding offices through President. A member of NACE since 2003, he previously served as Alabama State Director for the NACE Board and currently serves on the National Association of Counties Transportation Steering Committee.

“It’s very humbling to be selected by your peers to lead a group like NACE,” Beyer said. “If not for the support of the Elmore County Commission and the backing of the staff at the highway department, this would not have been possible.” He thanked the employees of the department for “taking care of things and letting me focus on the big picture items.” Beyer thanked the Commission for giving him the chance to work for Elmore County’s interests in wider positions. “This has been good for the county in general,” he said. “We’ve been able to have some opportunities through me being an officer that we probably wouldn’t have had otherwise.

(Sources: “Beyer to be National Engineers President”, Darin Goodwin, The Wetumpka Herald, March 31-April 1, 2012 and Press Release, National Association of County Engineers, April 10, 2012.)

The Importance of a Cell Phone Policy

A jury in Corpus Christi, Texas, has awarded $21 million to Vanice Chatman-Wilson, 37, who was struck by a Coca Cola truck driver, Araceli Venessa Gabral, while she was talking on a cell phone at the time of the August 2010 accident, according to Thomas J. Henry Injury Attorneys, which released a statement regarding the verdict.

The law firm described Coca Cola’s cell phone policy for its delivery drivers as “vague and ambiguous.” The firms also said the jury heard that “Coca Cola withheld this information from its employee driver.” In addition, the statement went on to say that during the trial, the truck driver said that if she had known of the risks associated with distracted driving, she would not have taken that action.

Coca Cola released a statement, according to MSNBC, after the trial that said its cell phone policy is “completely consistent with, and in fact, exceeds the requirements of Texas law,” that it disagrees with the jury’s verdict and plans to appeal.

Here are three important lessons this historic case teaches fleet managers:

1. **When it happens to you, the plaintiffs will sue:** Thomas J. Henry, the lead plaintiff’s attorney said in a press release, “From the time I took the Coca-Cola driver’s testimony and obtained the company’s inadequate cell phone driving policy, I knew we had a corporate giant with a huge safety problem on our hands.” Furthermore, he said, “I hope the verdict sends a message to corporate America that you can’t have employees on a cell phone and endanger the motoring public. “The lesson is simple: plaintiffs are watching and waiting to sue employers whenever employees crash due to a cell phone related distractions.

(Continued on next page)
2. **Written cell phone use policy is not enough:** Coca Cola’s lawyers argued that its company cell phone use policy, which required the use of a hands-free device when operating a motor vehicle, was consistent with, and in fact, exceeded the requirements of Texas law. The plaintiff, however, argued that Coca-Cola’s cell phone policy for its delivery drivers was “vague and ambiguous” and it certainly wasn’t enforced in any way. Regardless of whether Coca Cola’s was well-documented or not, empirical evidence shows that many employee drivers flout written policies. The bottom line is that written policies alone are not sufficient to change employee driving behavior, and therefore are not sufficient to protect employers from risk and liability.

3. **Policy enforcement is critical:** Let’s assume, for the sake of argument, that every single one of Coke’s drivers fully understood that the company required hands-free use of mobile devices while driving. The critical question remains: “What, if anything, did Coke do to measure compliance with its cell phone use policy?” If the answer is “nothing”, the case law clearly shows that employers should expect to be held accountable for damages that occur when employees drive distracted.

This isn’t the first multi-million dollar lawsuit resulting from employee mobile phone use while driving—or even the first with a verdict over $20 million. But this case emphasizes just how serious the risk is—and that all employers can be vicariously implicated if they fail to manage and monitor how employees are using mobile devices while driving. Employers who want to minimize liability as much as possible must institute risk management programs to actively or passively enforce cell phone use policies.

(From www.automotive-fleet.com, 5/22/12)

Employee Safety

When an employee of a Market Basket store in Rindge, MA fell 11 feet to a concrete floor and sustained broken bones and head trauma, store management didn’t call 9-1-1. Instead, the injured worker was lifted from the floor, placed in a wheelchair and pushed to the store’s receiving dock, where he waited for a relative to take him to the hospital.

That incident prompted an OSHA inspection that ultimately involved two different Market Basket locations — after an OSHA supervisor who was grocery shopping at a Market Basket in Concord noticed the same type of fall hazards there.

DeMoulas Supermarkets, Inc. — which does business as Market Basket — has been cited for 30 alleged willful, repeat and serious violations of workplace safety standards and faces a total of $589,200 in proposed fines, chiefly for recurring fall and laceration hazards and also for improperly responding to a worker’s serious injury.

“Employers with multiple locations have a responsibility to ensure safe and healthful working conditions at all of their workplaces.” said Assistant Secretary of Labor for OSHA Dr. David Michaels. “This employer has been cited for similar conditions at numerous other stores. Although those individual hazards were abated, this employer has not taken effective steps to correct these hazards across the board.”

OSHA found that employees at both stores were exposed to falls from heights greater than 11 feet while working on top of produce coolers, freezers and storage lofts that lacked adequate guardrails. OSHA previously had cited DeMoulas for the same hazard at the Concord store as well as stores in Fitchburg, Lawrence and Tewksbury, Mass.

Employees who worked in the produce, deli and bakery departments at the Rindge and Concord stores also were exposed to laceration hazards from knives due to the grocery chain’s failure to conduct a hazard assessment and provide hand protection. DeMoulas previously was cited by OSHA for the same types of hazards at its Tewksbury and Westford, Mass., locations.

Due to the company’s knowledge of the fall and laceration hazards and its systemic failure to correct them, OSHA cited four willful violations with $261,000 in proposed penalties.
Continued from page 5; (“Employee Safety”)

Additionally, Demoulas Supermarkets has been cited for seven repeat violations with $225,500 in fines for hazardous conditions similar to those previously cited at its Ashland, Andover, Fitchburg, Salem, Tewksbury and Westford, Mass., locations. These citations encompass amputation hazards stemming from a lack of procedures, training and equipment to ensure that a meat saw and seafood cooler would not be activated while employees were cleaning them, as well as hazards from exposed portions of the saw’s blade; inadequate training of powered industrial truck operators; and a lack of bloodborne pathogen training for an employee required to clean equipment and work areas contaminated with human blood.

Finally, the company has been cited for 19 serious violations with $102,700 in proposed penalties. One violation was cited under OSHA’s general duty clause for failing to contact emergency services and for moving the injured employee. The remaining 18 violations involve obstructed exit routes; a lack of eye and hand protection and an emergency eyewash for employees working with or near battery acid; a lack of chemical hazard communication training for workers; and other hazards related to electrical equipment, machine guarding and bloodborne pathogens.

(From Industrial Safety & Hygiene News, www.ishn.com/articles, 10/20/2011.)

Crews were working at night to replace aging cast-iron water pipes in an intersection. One worker was standing in the street, guiding the operator of a wheel loader as he backed out into the intersection. After the loader stopped backing up and started moving forward, the worker decided to hitch a ride, and grabbed the loader’s side ladder. The ladder rungs were slick with rain, and the worker lost his grip, falling beneath one of the rear tires. He went to the hospital with 10 fractured ribs, a bruised lung and a lacerated liver.

The bottom line
Always maintain a three-point contact with steps and hand holds and never attempt to mount or dismount a moving wheel loader. Face the machine when you get on or off a machine. Don’t use the steering wheel or any control lever as a hand hold when you enter or leave the machine. Before starting a wheel loader, walk completely around the equipment. Make sure no one is under the machine, or on it or close to it. Sound the horn and let other workers and bystanders know you are starting up. Don’t start until everyone is clear of the machine. Never use the bucket for a work platform or to carry other workers. Always look around before you back up, hook up or swing an attachment. Be sure that everyone is in the clear. Know the pinch points and rotating parts on the machine; never let anyone in or near the pivot point of an articulated machine. Take it slow and easy when traveling through congested areas, and give the right of way to loaded machines. Maintain a safe distance form other machines. Pass cautiously. Don’t obstruct your vision when traveling or working. Carry the bucket low for maximum stability and visibility, and carry attachments in the transport position. Stay in gear when traveling downhill. Do not shift into neutral. Maintain engine rpm to provide steering and braking functions. Use the same gear for traveling down a grade as you would for traveling up a grade.

A Study of Alternative Bidding

In response to the large, sudden, and constant fluctuation in paving material cost, agencies at all levels — federal, state, and county, and city — are taking a look at alternative pavement type selection (APTS). They hope APTS will increase competition and decrease costs by:

• Taking into account the actual material cost at the time of bidding.
• Attracting more bidders.

At the 2012 TERRA Pavement Conference on February 9 in Minnesota, Dave Johnson, now a transportation consultant and previously the director of MnROAD research, discussed a three-year evaluation of APTS.

(Continued on next page)
In an APTS project, the agency creates equivalent designs for concrete and asphalt construction. Then life-cycle cost analyses (LCCA) are calculated for both material types, and the difference between the LCCAs is computed and shown in the Special Provisions section of the RFP. Bidders may choose to bid either material type. For the purpose of bid selection, the difference between the calculated life-cycle costs is added to bids on the design with the higher life-cycle cost.

Study procedure

Johnson’s study was mandated under an experimental Federal Highway Administration program designated SEP 14. Working with an advisory panel composed of representatives from government and industry associations, he evaluated ten APTS projects — five done for MnDOT and five for Minnesota counties. A questionnaire, in part based on the requirements stated in SEP 14, was then developed and sent to MnDOT employees, county engineers, and contractors who had bid on APTS projects within the past three years (including bidders who were not awarded projects). Of those who received questionnaires, 57 percent responded.

Results

The obvious downside of APTS is that it makes more work for both agency personnel and bidders. This was strongly reflected in the responses. At MnDOT, the extra work was done mostly by design and estimating functions. Bidders’ extra work was increased if subcontractors were involved. No respondents identified time savings. Other key findings:

- Because of market volatility and project variability, it was impossible to determine if APTS had actually reduced the costs of projects.

- Only one of the five MnDOT projects received both concrete and asphalt bids. Johnson surmised that, in some cases, one industry may have been prevented from submitting bids because of current market conditions. He added that, in one instance, while part of the project was open to both material types, an asphalt overlay was specified for another part of the same project. A survey responder stated that this effectively locked out concrete companies from bidding.

- Two of the five MnDOT projects contained lump-sum bid items; that reduced the workload for MnDOT but increased the workload for bidders.

- County responders reported anecdotally that they received more bids on APTS projects than they usually get on conventional bid projects; however, no comparative data were provided.

- Though MnDOT personnel stated that alternate designs were equivalent, industry respondents complained that they were not equivalent.

- One MnDOT respondent rejected APTS completely and said MnDOT should always select the pavement type.

- Respondents felt that APTS is complicated because specifications and standards for the two materials have been developed independently. It was suggested that future APTS designs and bidding could be simplified if specifications and standards for the two materials were made more similar.

- Similarly, one MnDOT district used an “alternate pavement match line” between AC and PCC designs in an effort to reduce complexity. At each level of the pavement, it tried to make the structures as similar as possible for both designs. This simplified excavation and embankment computations and drawings.

- Bidders felt there was some lack of uniformity on the part of MnDOT in carrying out the APTS process. In response, MnDOT has sent out a memo providing additional APTS guidelines to make projects more uniform.

(Continued on next page)
• Some bidders questioned the fairness of the life-cycle cost analysis method used by MnDOT. Johnson commented that, no matter how bids are handled, this will probably always be an issue.

• The APTS process did not significantly affect construction. However, respondents did complain that the plans were more voluminous and more confusing to construction staff.

• There was no discernible consensus on which type of project (rehabilitation, reconstruction, preservation) might be more appropriate for APTS bidding.

(Prepared by Richard Kronick for “Technology Exchange”, Minnesota LTAP, Spring 2012.)

Alabama Transportation Conference Presentations

The Alabama T2 Center is one of the sponsors of the Annual Transportation Conference. The 55th Conference was held in Montgomery on February 23-24, 2012. At the Conference there were 38 technical presentations covering all aspects of transportation. Speakers were given the opportunity to provide us an electronic copy of their presentation for distribution. As a result 33 presentations are now available on the Alabama T2 website>www.alabamat2.org< and can be accessed by clicking on “Transportation Conference”. The presentation topics and authors are identified below.

AASHTO Guide Specification for Seismic Designs– Alabama Bridges
Dr. Justin D Marshall, Auburn University

Alabama Strategic Highway Safety Plan
Timothy E. Barnett, ALDOT

Alabama: Taking Business Where It Wants to Grow
Greg Canfield, Alabama Development Office

Application of Coastal Engineering Principles in Response to the Deepwater Horizon Disaster: Lessons Learned in Coastal Alabama
B.M. Webb, S.L. Douglass, C.R. Dixon and T. Buhring, South Coast Engineers

Approaches to the Problem of Distracted Driving
Clay Ingram, AAA Alabama

Automated Photo Enforcement: History and Overview
Mark Bedard and Rich Kosina, GATSO USA

Conservatism in Rock Socketed Drilled Shafts: Too Much or Too Little?
Robert Thompson, Dan Brown and Associates

Controversial Content of 2009 MUTCD
Stacy N. Glass, ALDOT

Deep Horizon/BP Oil Spill & Response
Mayor Tony Kennon, City of Orange Beach

Deepwater Horizon Oil Spill Impacts on Alabama Beaches
Dr. Joel Hayworth, Auburn University

Drive Safe Revolution: Start Something Alabama
Tony Harris, ALDOT

(Continued on next page)
Continued from page 8, (“Alabama Transportation Conference Presentations”)

EPA's New Construction General Permit
Mike Mitchell, U.S. Environmental Protection Agency, Region 4

Implementing Mechanistic-Empirical Pavement Design and DARWin
Chris Wagner, FHWA

Joint Leakage: Bankhead Tunnel
Luther H. Boudra and Gary Rhodes, AMEC Engineering

Learning from Disasters: Tornado Outbreaks of 2011
Dr. Andrew J. Graettinger, University of Alabama

Low Impact Development (LID) Update
Paul Dicker, U.S. Army Corps of Engineers

Mitigation of Cracking of Cast-In-Place Box Culverts
Dr. Anton K. Schindler and Layton W. Minton, Auburn University

Modern Roundabouts Key Design and Operational Issues
Mark Doctor, FHWA

NCAT Pavement Test Track
Dr. R. Buzz Powell, National Center for Asphalt Technology, Auburn University

Overview of EPA's Stormwater Program: Post Construction and New Rulemaking Considerations
Mike Mitchell, U.S. EPA Region 4

Pavement Factors Affecting Fuel Economy
Dr. Richard Willis, National Center for Asphalt Technology

Portland-Limestone Cement for Sustainable and Durable Construction
Tim Cost, Holcim (US) Inc.

Predicting Long-Term Pile Capacity in Cohesive Soils
Eric Steward, University of South Alabama

Replace 14 Bridges in 10 Weekends? The Massachusetts Fast 14 Project: Medford, MA
Michael P. Culmo, CME Associates, Inc.

Reverse Angle Parking: Lessons in Implementation
Jennifer P. White, City of Mobile

Roundabouts: Georgia's Story
Scott Zehngraff, Georgia DOT

Geographic Information Systems for Alabama
Phillip Henderson, Alabama Geographic Information Program Office

Surveying With T-LIDAR (Terrestrial LIDAR) On Highway Projects
Marshall A. McLeod, Professional Land Surveyors

The Ellicott Line: The Line of Demarcation
Dr. Larry G. Crowley, Auburn University, and Milton Denny, Denny Enterprise LLC

The New AASHTO Green Book
Joe W. Ruffer, Mobile County

Troubleshooting Concrete Specifications
Michelle L. Wilson, Portland Cement Association

2011 AASHTO Roadside Design Guide
Frank Julian, FHWA
Baldwin County, AL, May 24, 2012 – Baldwin Rural Area Transportation System (BRATS) driver, Ron Stewart, pictured fourth from the left, won the Community Transportation Association of America’s “2012 National Otis Reed Q'Straint/Sure-Lok Driver of the Year” award for the United States and Canada at the annual national rodeo competition on May 20, 2012, in Baltimore, Maryland for the second time. Stewart was awarded National Driver of the Year in 2010 as well.

Stewart traveled to the national rodeo competition to represent the State of Alabama after achieving first place in the van category at the local and state level rodeos earlier this year.

The national rodeo consists of over 65 participants competing in two categories, van and bus. The van category consists of vehicles that can carry 14 or less passengers and the bus category are vehicles which can carry 15 or more passengers.

Stewart achieved first place in the national van category after completing a strenuous competition that included a written test, wheelchair securement procedures testing, pre-trip testing and an extensive driving obstacle course.

Also representing BRATS and the State of Alabama at the national competition was BRATS driver Steve Huggins who placed fifth in the Body on Chassis category of the competition.

This is the fourth time in the last six years that a BRATS driver has earned this honor. In 2007, BRATS driver Dwayne Bran-nan earned this title during the national competition in Reno, Nevada. In 2008, Lenzy Williams earned this title during the national competition in New Orleans, Louisiana. In 2010, Ron Stewart earned this title for the first time during the national competition in Long Beach, California.
LTAP Regions 4 & 5 Joint Meeting Recap

On May 8-11, 2012, the South Carolina LTAP hosted a joint regional meeting and Safety Peer Exchange with LTAP (Local Technical Assistance Program) Regions 4 and 5 in Myrtle Beach, SC. The states included in this meeting were Alabama, Georgia, Florida, Mississippi, Tennessee, Kentucky, South Carolina, North Carolina, Puerto Rico, Ohio, Minnesota, Michigan, Wisconsin, Illinois, and Indiana.

Some of the topics discussed were Federal Highway Administration (FHWA) Updates, Training Resources, Operations, Safety, a presentation on each center, and naming a new LTAP Region 4 representative.

The FHWA update identified programs, information and services that FHWA is making available to help LTAP centers. Another major issue FHWA discussed was funding. Participants from different LTAP centers chimed in with a variety of questions.

Another major part of the meeting was the Safety Peer Exchange. There were several breakout sessions. The main breakout sessions were Highway Safety Manual, Center Operations, Directors Exchange, Budgeting and Funding, and regional discussions. Each breakout was well attended, and provoked a lot of discussion.

Each center also gave a brief presentation on their center. Each presentation went over what the center does and what training they have offered in the last year. Each center has different ways of doing things, but in the end all centers try their best to offer as much training as they can to help their state with the money they have available.

At the end of the meeting Larry Sellers with the Alabama Technology Transfer Center nominated Garry Havron, also with the Alabama LTAP, to be the new Region 4 representative. After a brief discussion no one opposed. Garry Havron will replace Valerie Pitts. Valerie will remain the Secretary for the National LTAP Association.

(Prepared by Garry Havron, June 26, 2012)

Publications From Auburn University

The following publications are free upon request from the Auburn University T2 Library. Please call Alice Fraasa in the AU Civil Engineering Department at (334) 844-4320 or email her at fraasak@auburn.edu

This 4 x 5.5 inch Guide covers the key aspects of driving responsibly. Topics covered include defensive driving, distracted driving, drowsy driving, and aggressive driving. This Guide is particularly appropriate to young drivers.

This booklet presents different approaches to traffic monitoring. It should aid the user in developing a basic understanding of traffic data collection principles and procedures.

302-3 **Developing Capacity Models for Local Roundabouts** Ting Wei et al., Transportation Research Record 2257, Transportation Research Board 2011, 9 pp.

A streamlined process is described to determine the capacity of single-lane and multilane roundabouts. A case study of three roundabouts in Carmel, Indiana is presented. The importance of using capacity models applicable to local conditions is emphasized.

(Continued on next page)
(Continued from page 11, (“Publications From Auburn University”)

Using data collected on 2-lane highways in Missouri, Pennsylvania and Texas, the authors conclude that 2-lane highways could be safely designed with passing sight distance criteria equal to or greater than the values used in marking passing and no-passing zones. The recommendation is to use the MUTCD values, rather than the 2004 Green Book values.

302-5 Should the Diverging Diamond Interchange Always be Considered a Diamond Interchange Form? Gilbert Chlewicki, Transportation Research Record 2223, Transportation Research Board, 2011, 8 pp.

The diverging diamond interchange (DDI) is examined with respect to its safety features, low costs and operational benefits in handling turning movements. The critical lane volume method was used to evaluate a large sample of turning movement combinations. The results suggest that the DDI be considered for interchange improvements.

302-6 Effect of Arterial Signal Coordination on Safety Wei Li and Andrew P. Tarko, Transportation Research Record 2237, Transportation Research Board, 2011, 9 pp.

The authors developed a method to evaluate arterial signal coordination for safety. The frequency and severity of rear-end and right-angle collisions were studied. Data was collected at six arterial systems in Indiana. The research findings can serve as a guide for traffic engineers to improve safety on signalized arterials.