PRODUCTION AND PLACEMENT OF WARM MIX ASPHALT

WMA Webinar September 19, 2013

Overview

- Consider mixture characteristics and costs
- Review of materials costs
- Determine the bottom line

Characteristics to Consider

- Ability to carry applied stresses
- Workability handwork, feathering, compactability
- Lift thickness t/NMAS ratio, lane drop-off
- Aesthetics smoothness and texture
- Friction
- Noise
- Durability

Refer to NAPA IS 128

Costs to Consider

- Cost of component materials
- Equipment rental or depreciation to add components
- Drying costs of materials
- Productivity (tons/hr)
- Haul/delivery costs
- Placement and compaction costs
- Potential of acceptance/pay penalties

Mix Production Costs

Depreciation	\$1.24
Maintenance	\$1.13
Labor	\$1.79
Energy/Drying	\$2.87
Electric Power	\$0.04
Equipment	\$0.97
Aggregate	\$11.27
Asphalt	\$20.57
Other	\$0.44
Total	\$40.31

Purchase Price of Materials

Example

Material	<u>\$/ton</u>
• #67 stone	12.70
• #78 stone	13.50
• #89	11.00
 Washed #10s 	13.00
 Natural sand 	10.75
 Hydrated Lime 	160.00
 RAP (4.5% binder) 	7.45
• PG 67-22	410.00

Hidden Costs of Aggregates

- How much water are you buying?
- How much does it cost to dry the aggregate?
- How much material is wasted or lost?
- What is the asphalt demand for the aggregate?

Cost of Dry Aggregate

\$/dry ton = (\$/wet ton) x (1+w/100)

Example:

5000 tons of W10's purchased from a quarry at \$13.00/ton. The W10's had 5.6% moisture at delivery.

\$/dry ton = (\$13.00/ton) x (1+(5.6/100)) \$/dry ton = \$13.00/ton x 1.056 = \$13.73

Dry inventory = 5000 tons/(1+w/100)= 4734 tons

Handling Costs, Including Loss

Handling costs

- Stockpiling equipment and space
- Inventory management
- Loss all materials purchased do not end up in a finished (sold) product
 - Purchased moisture
 - Yard waste
 - Plant waste
 - Theft

Production Costs

- Depreciation
- Maintenance
- Labor
- Drying
- Electric Power
- Equipment

Drying Costs

Astec T-119 Dryer Drum Mixer

Do Covered Stockpiles Payoff?

Moisture

- 1% increase in moisture increases drying cost by 10 to 12%
- 1% increase in moisture decreases production rate by 11%
- Which material stockpiles retain the most moisture?

Plant Diagnostic Tool

http://www.pahotmix.org/images/bobfrank.swf

Estimated Reduction in Emissions

Special Equipment for Additives

Warm Mix Asphalt

- Cost Additions/Cost Savings: Rules of Thumb
 - Potential Savings
 - Burner fuel
 - Improved in-place density
 - Less wear on plant?
 - Slightly lower asphalt content?
 - Better work environment improved productivity
 - Higher RAP contents
 - Potential Additions
 - WMA additive
 - Plant modification
 - Anti-strip additive

Energy Savings

Based on NCHRP 9-47A field trials: Avg. fuel savings with WMA = 23%

Production of WMA

- Same plants, may be modified in many cases
- Same hauling and laydown equipment
- Same compaction equipment

Adequate Baghouse Temperatures Must be Maintained

- Low baghouse temperature can cause condensation
 - Corrosion of the baghouse
 - Formation of damp baghouse fines
- Acceptable baghouse inlet temperatures
 - > 220°F for low-sulfur fuels
 - > 240°F for high-sulfur fuels (reclaimed oils)
 - Varies from plant to plant and mix to mix

Maintaining Baghouse Temperatures

- Seal air leaks
- Preheat the baghouse for 15 to 20 minutes
- Inspect fine return lines for buildup
- Occasionally paint corroded interior surfaces with epoxy-based paint

Burner Adjustments

- Burner may need to be tuned to run efficiently at lower temperatures
- Improper burner adjustment can cause the burner to not add enough air to burn all of the fuel
 - Expensive
 - Mix contamination

Signs of Unburned Fuel

- Brown film around coated aggregate
- Increased susceptibility to rutting
- Lower dynamic modulus (E*) values
- Increased carbon monoxide (CO) levels
- Fuel in baghouse

Differences with WMA Production

- Addition of the WMA additive or foaming the binder
- Setting the production temperature
 - Start production at normal HMA temperatures, then decrease the temperature to the WMA target

Astec Double Barrel Green Foaming System

 One pound of water per ton of mix, or about two percent of the asphalt flow rate. This is 0.05% moisture in the mix.

Foaming Warm Mix Process

at AUBURN UNIVERSITY

WMA Dosing

- Refer to product manufacturer for dosage rates
- Ensure injection systems are cleaned and calibrated regularly for accurate dosing

Removing Moisture

- Increase aggregate retention time
- Insulate dryer shell
- Use variable frequency drive (VFD)
- Reduce stockpile moisture content

Plant Addition of Aspha-min

Plant Addition of Sasobit

Chemical Additives

- May be added at the asphalt terminal or added at the plant
- Dosage rates depend on the selected additive

Plant Concerns with WMA

Plant burners may not be properly tuned even for normal HMA production

Incomplete fuel combustion leads to:

- Poor fuel efficiency
- Fuel contamination of the mix (liquid fuels)
- Stack emission problems (CO and THC)
- Potential for a baghouse fire

WMA Production Concerns

- Amperage on motors for drag slat conveyors, coaters, etc.
- Incomplete coating of aggregate

Signs of Incomplete Drying

- Mix Temperature drops more than 20^oF from discharge to loadout
- Excessive steam from drag conveyors
- Water dripping from silos

Plant Concerns with WMA

- Condensation in the baghouse could cause:
 - Mudding of the bags
 - Increase draw on exhaust fan motor
 - Formation of corrosive acids with gases from high sulfur fuels

Warm Mix Asphalt

Other Concerns with WMA

- Activation/melting of RAP or RAS binder at lower temperatures
- Additional expense
- One more material/process to control

WMA Mix Test Concerns

- Lower mix temperature results in less aging of the binder that could result in increased:
 - Moisture susceptibility
 - Lower tensile strengths
 - TSRs
 - Rutting potential
 - APA
 - Hamburg
 - Flow Number

Combining WMA & RAP

- Superheating solves baghouse problem without plant modification or efficiency loss
- Superheating assures virgin aggregates are dried
- Provides the greatest economic and environmental benefit

Combining WMA & RAP

- Superheating solves baghouse problem without plant modification or efficiency loss
- Superheating assures virgin aggregates are dried
- Provides the greatest economic and environmental benefit

Combining WMA and RAP

- WMA technologies can improve the ability to properly coat aggregates and RAP during production
- Lower production temperatures will reduced plant aging of binders which may allow for increased use of RAP without grade bumping

Rate of Cooling Variables

- Layer Thickness
- Air Temperature
- Base Temperature
- Mix Laydown Temperature
- Wind Velocity
- Solar Flux

Example Paving Temperature Decrease

Hot Mix 314 °F

Aspha-min Mix 254 °F

138.1 pcf

138.5 pcf

Better Work Environment

- Studies to quantify fumes have shown that WMA:
 - Reduces Total Organic Material > 90%
 - Drops Benzene Soluble Matter below detectible limits

Better Temperature Uniformity

 The key is getting density and getting it uniformly

Compactive Effort

- WMA has been seen to require less compactive effort even with the lower temperatures
- Changes may need to be made with WMA due to higher densities
 - Change rolling pattern
 - Decrease binder content
- Check with non-destructive device calibrated to cores

Temperature Segregation

- Temperature differentials in the mat can cause density problems.
 - Temperature differentials exceeding 30°F can cause an 80% reduction in fatigue life (NCAT).
 - TTI recommends keeping temperature differentials below 25°F.

Infrared (IR) Bar

- Collects and displays pavement temperatures across the mat.
- Allows for corrections to improve overall uniformity

Document1 - Microsof... 🔇 IR Read File Name:C:..

1+400 1+420 1+440 1+460 1+480 1+500 1+520 1+540 1+540

			235.3			*238.0	
1+560	1+580	1+600	1+620	1+640	1+660	1+680	1+700

243.0		224.0			243.8		[*] 244.0	
-------	--	-------	--	--	-------	--	--------------------	--

(9) IR Read File Name:C:...
Document1 - Microsof...

🛃 start

Making Field Adjustments to Mixes

- It is almost a certainty that any mixture will require some adjustments to meet acceptance targets (air voids, asphalt content, etc.)
- Differences between the lab mix design and plant produced mix can be caused by:
 - Changes in the aggregate properties
 - Breakdown of aggregate through the plant
 - Incomplete drying
 - Surges in baghouse fines return
 - Differences in aging and absorption
 - Inaccurate plant calibration
 - Different laboratory equipment
 - Different technicians

Making Field Adjustments to Mixes

- Maintain current data on stockpile gradations. This will provide a heads up on changes from the mix design.
- Make sure plant is "leveled out" before taking a mix sample. For most plants, this takes about 80 to 100 tons.
- Conduct tests to determine Pb, gradation, Gmm, and Gmb

WMA is not a cure for bad construction practices!

Additional Resource

