Investigation on Cross-frame Behavior in Steel Girder Bridges

prepared by:

Farhan Chowdhury, Ph.D. Student
Wei Song, Ph.D., Assistant Professor
Dept. of Civil, Constr., and Env. Engrg.

Intelligent Systems and Structural Dynamics Laboratory
http://wsong.ua.edu

Acknowledgement

• ALDOT Bridge Bureau
 — Tim Colquett, Randall Mullins, Berhanu Woldemichael
• Bridge Engineers
 — Lloyd Pitts from Volkert
 — Josh Orton from Heath & Lineback Engineers
• Fabricators
 — Hirschfeld Industries-Bridge
 — Stupp Bridge

Outline

• Motivation
 — Use of steel girder bridges in AL
• Background
 — Technical Challenges
 — Gaps between knowledge and practice
• Current Comprehensive Analysis for Steel Girder Bridges
 — NCHRP 12-79 Project (725 report)
• Research Goals & Program
• Next Steps

Motivation: Use in AL

Steel Girder Bridge is one of the most efficient, economical, and aesthetically pleasing design options for

— Long span
— Curved roadway
— Sharp Skew

Background: Challenges

• Curved geometry and skewed support cause
 — Differential deflection ($\delta_1 \neq \delta_2$)
 — Torsional rotation ($\theta \neq 0$)

• Difficult to predict the deflected geometry

Background: Recognized Concerns

• Lack of Proper Analysis Tools
 — 1980s~2006, the following tools have been developed based on multiple NCHRP projects
 • 1D Line Girder Analysis Method + V-Load Method
 • 2D Grid Analysis Method (DESCUS and MDX)
 — Results in more than 30% normalized error for skewed and curved steel girder bridges [NCHRP 12-79, 2012]
• Lack of Clear Guidance on Detailing
 — Multiple cross-frame fitting details are available
 • No load fit (NLF)
 • Steel dead load fit (SDLF)
 • Total dead load fit (TDLF)—ALDOT practice
 — But what are the potential impacts when using different detailing methods?
Gaps Between Knowledge and Practice

- Due to the lack of analysis tools, current structural analysis assumes:
 - Exactly plumb girders;
 - Zero flange lateral bending stresses;
 - Zero cross-frame locked-in stresses.
- But the potential concerns remain:
 - NLF detailing may produce undesired demand in bridge supports due to twist (i.e., layover) under dead loads, and leave a larger internal stress after the construction;
 - SDLF and TDLF detailing methods induces locked-in stress during erection due to the lack-of-fit between cross-frames and girders.

NCHRP 12-79 Project

- Report 725 published in 2012, based on the 3D FE analysis of a total of 58 I-girder bridges, it suggests to avoid TDLF with span length >200 ft and L/R >0.1.
- Report 725 contains the analysis of the following cases:
 - Out of the total 58 I-girder bridge cases, 16 are existing bridges that have been constructed (others are example bridges found in literature for parametric studies)
 - Out of the 16 existing bridges, 3 are continuous-span, curved I girder bridges with skewed supports (and L/R > 0.1)
 - 2 are detailed as NLF
 - 1 is detailed as TDLF—Alabama Galleria Bridge

Research Goals & Program

- Research Goals
 - Develop an accurate procedure to investigate the impact of cross-frame fit-up details on the behavior of the steel girder bridges.
 - Apply this procedure to characterize the behavior of existing ALDOT representative steel girder bridges.
- Research Program
 - Select representative ALDOT bridges
 - Conduct numerical analysis to investigate the impact of cross-frame fit-up details
 - Update the numerical analysis with experimentally validated cross-frame models
 - Reporting and conclusion

Research Tasks

- Task 1: Selection of Representative Bridges and Cross-frames
 - Factors: span length, deck width, curvature of the girder line, and skew of the supports;
 - Bridges with representative cross-frame designs (X- and K-frames).

- Task 2: Development of Analysis Procedure using 3D Finite Element Program
 - Model the cross-frames with the experimentally validated behavior;
 - Consider the following effects:
 - Geometric Nonlinearity
 - Residual Stress
 - Live and dead element (simulating possible loss of girder sections)

Intelligent Systems and Structural Dynamics Laboratory (http://wsong.ua.edu)
Research Tasks

- Task 3: Experimental Study of Selected Cross-frames
 - NCHRP 12-79 applied truss element to model cross-frame members, which may have overestimated the cross frame stiffness [TxDOT, 2014]
 - Experimentally test the representative cross-frame designs to update the analysis in Task 2.

Research Tasks

- According to TxDOT research (@Utexas, 2014) on cross-frame, using truss element will overestimate the stiffness of cross-frame.

Research Tasks

- Truss Element Model

Research Tasks

- Shell Element Model
Research Tasks

- So far
 - Numerical tools have been developed
- What’s next
 - Complete the numerical analysis with representative bridges with NLF and TDLF;
 - Select critical cross-frames for experimental study;
 - Update the numerical analysis with experimentally validated cross-frame models.

Experimental Setup

Thank you!

If you have any inputs or comments, please send them to wsong@eng.ua.edu!

NCHRP 12-79 Project

- Based on the analysis of a total of 58 I-girder bridges, the NCHRP Project 12-79 has made the following recommendations:

 | Table 2 Recommend Fit Conditions for Straight I Girder Bridges (0.0 ≤ tan θ ≤ 0.05) |
 | --- | --- | --- |
 | Recommended | Acceptable | Avoid |
 | Any Span length | SDLF | TDLF | NLF |

 | Table 3 Recommend Fit Conditions for Curved I Girder Bridges (θ ≥ 0.03) |
 | --- | --- | --- |
 | Radial or Skewed Supports | Recommended | Acceptable | Avoid |
 | Span lengths ≥ 250 ft and 0 < θ ≤ 0.03 | NLF | SDLF | TDLF |
 | All other cases | SDLF | NLF | TDLF |

NCHRP 12-79 Project

- 2008-2012 by Dr. Donald W. White
- 3D FEA for 58 I-girder bridges + 18 tub-girder bridges
 - A (6% error) ~ F (30% error)
 - Errors are large for skewed and curved I-girder bridges