Improved Pavement Rehab Decisions using Ground Penetrating Radar (GPR) Technology

by
Ken Maser, Infrasense, Inc

60th Annual Transportation Conference
Sponsored by Auburn University
February 9, 2017

Outline
• GPR technology – how does it work
• GPR pavement applications
 • Layer thickness
 • Base material type
 • Moisture damage
 • Integration with other technologies (FWD, TSD)
• New Developments in GPR systems (3D Radar)

Air-coupled (Horn) Antennas (1 and 2 GHz)

GPR Horn Antenna Equipment

Arkansas DOT
EDOT
Maine DOT
MnDOT

Principles of GPR - Pavements

Sample Graphic GPR Data

Distance
Pavement Surface
Base

Time (depth)
Pavement Thickness

![Pavement Thickness Diagram]

Linear Plot of Pavement Layer Thickness

![Linear Plot Diagram]

Tabular Thickness Output

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Distance From Reference Location (ft)</th>
<th>Total Asphalt Thickness (in.)</th>
<th>Total Base Thickness (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.8331866</td>
<td>-79.7335129</td>
<td>0</td>
<td>8.57</td>
<td>6.92</td>
</tr>
<tr>
<td>34.8331875</td>
<td>-79.7335194</td>
<td>5</td>
<td>8.49</td>
<td>6.50</td>
</tr>
<tr>
<td>34.8331788</td>
<td>-79.7335272</td>
<td>10</td>
<td>8.41</td>
<td>6.38</td>
</tr>
<tr>
<td>34.8331563</td>
<td>-79.7335148</td>
<td>15</td>
<td>7.85</td>
<td>6.22</td>
</tr>
<tr>
<td>34.8331563</td>
<td>-79.7335148</td>
<td>20</td>
<td>7.09</td>
<td>6.08</td>
</tr>
<tr>
<td>34.8332066</td>
<td>-79.73376185</td>
<td>25</td>
<td>8.56</td>
<td>7.04</td>
</tr>
<tr>
<td>34.8331733</td>
<td>-79.73378111</td>
<td>30</td>
<td>8.45</td>
<td>6.70</td>
</tr>
</tbody>
</table>

GPR Thickness Data for Rehab Planning & Decisions

- **Shoulder Capacity Studies**
 - do the shoulders have enough pavement to carry the load for traffic diversions, bus lanes, or widenings?
- **Asphalt removal quantity estimates**
 - Construction planning
- **Roadway structure properties (combine with FWD)**
 - Determine depth of weak layer(s)
 - Determine remaining life
 - Specify appropriate rehab

Can shoulders become bus lanes?

I-270 in Maryland - 125 lane miles of ramps at 11 interchanges

I-93 Boston – 1-mile viaduct asphalt overlay thickness to determine removal volume
Needs ($) Assessment – 4000 miles of ND County Roads – GPR thickness with FWD

Changes in Pavement Structure
Pavement Base Type Evaluation

Base Type Map – Memorial Shoreway, Cleveland, OH Shoulder Evaluation

GPR Data Showing Moisture Damage
Determine location, quantity, and depth of damage

Moisture Damage (stripping) in AC Pavement-I-64 near James City, VA

GPR + Deflection Data
• Combine layer thickness with deflection to calculate
 • Layer moduli (pavement and subgrade)
 • Effective structural number
 • Remaining life
 • Overlay/rehab requirements
Deflection Testing - Falling Weight Deflectometer (FWD)

Deflection Testing – Traffic Speed Deflectometer (TSD)

Remaining Life (years)

I-15 Southbound Segment Analysis

Next Generation GPR - 3D-Radar

3D Radar Equipment
SHRP2 R06D – Detection of Delamination in Asphalt Pavement using 3D Radar

GPR Depth “Slice” showing “stripping” and water infiltration

Mapping a Larger Area (I-75 Gainesville test section)

Thank you!