BACKGROUND

- Pavement preservation treatments are a cost-effective alternative for extending pavement life
- A successful pavement preservation program requires best practices for ensuring quality treatments

BACKGROUND

- Common preservation treatments
 - Chip seals
 - Slurry seals / micro surfacing
 - Thin overlays
- All share same elements of best practices

BACKGROUND

- Site selection
 - It all starts with selecting good candidates!
 - Set treatment up for success
 - Pavements structurally sound
 - Minor distresses
BACKGROUND

- Chip seals
 - Loss of friction
 - Minor cracking, water infiltration
- Slurry seals / micro surfacing
 - Loss of friction, oxidation, raveling
 - Uneven surface profile and rutting
- Thin overlays
 - Loss of friction, oxidation and raveling
 - Minor cracking
 - Uneven surface profile and rutting

MATERIALS

- Aggregates
 - Size and gradation
 - Shape
 - Cleanliness
 - Durability
 - Resistance to abrasion

- Emulsion / Asphalt binder
 - Grade
 - Modification
 - Compatibility with aggregate

MATERIALS

- ASTM / AASHTO Standard Tests
- Agency specific tests

DESIGN

- Proportion of mixture components
 - Chip seals: Kearby or McLeod method
 - Slurry seals / Micro surfacing: ISSA method
 - Thin overlays: same as conventional overlays

 Design parameters must reflect whether the mix is dense-graded, SMA or OGFC
SURFACE PREPARATION

- Clean surface to obtain bond between pavement surface and treatment
- Seal cracks > ¼"
- Perform patching of localized distressed areas

SURFACE PREPARATION

- Remove thermoplastic markings and raised pavement markers
- Protect manholes and utility castings
- Mill (if required)

SURFACE PREPARATION

- Remove thermoplastic markings and raised pavement markers
- Protect manholes and utility castings
- Mill (if required)

CALIBRATION

- Important step in achieving good results
- Should be done for different types of equipment, depending on treatment
- Use same materials as project

CALIBRATION

- Chip seals
 - Binder distributor
 - Spray bar nozzles provide triple overlap coverage
 - None of the spray bar nozzles are plugged with debris
 - The spray bar height is correct
 - Chip spreader
 - Amount of aggregate is uniform across width
 - Desired amount of aggregate per unit area is applied
CALIBRATION

- Slurry seals / Micro surfacing
 - Pavers require calibration due to continuous mix operation
 - Output is measured by weight of aggregate, emulsion and fines
 - Ensure ratios of emulsion and fines with respect to the aggregate are as specified in the mix design
 - Test strips should be placed in conditions similar to those expected during project

- Thin overlays
 - Standard calibration procedures for the aggregate feed system into the hot mix plant
 - Tack coat distributor

CONSTRUCTION

- Weather conditions
 - Temperatures
 - Chip seals: 60F and rising
 - Slurry seals / micro surfacing: 45F and rising
 - Thin overlays: 50F and rising
 - No rain in the forecast

- Chip seals:
 - Humidity 50% or lower
 - Little to no wind

Weather conditions

- Temperatures
 - Chip seals: 60F and rising
 - Slurry seals / micro surfacing: 45F and rising
 - Thin overlays: 50F and rising
 - No rain in the forecast

- Chip seals:
 - Humidity 50% or lower
 - Little to no wind
CONSTRUCTION

- Slurry seals / Micro surfacing:
 - Typically, tack coat is not required
 - Use felt or plastic to provide straight edges
 - Minimize handwork
 - Roll parking lots, cul-de-sacs, and other pavements that will not receive regular traffic
 - Allow for curing before opening to traffic

CONSTRUCTION

- Thin overlays
 - Tack coat
 - Accelerated loss of heat – compaction must be completed quickly
 - Shuttle buggy / WMA technology increase time available for compaction
 - Keep rollers close by
 - Allow mat to cool prior to opening to traffic

SUMMARY

- High quality long-lasting treatments can be achieved
- Start by selecting good candidates
- Control all stages of the process
THANKS!

Any questions?
Reach me at
vargaad@auburn.edu