Scholarships/Financial Assistance

Loan and grant opportunities are available, including:

- Pell grants
- Guaranteed student loans
- Research internships with professors
- Birdsong study abroad scholarships
- Departmental scholarships

As students progress, the number of available scholarships and grants increases. Although some consideration is given to financial need, most scholarship awards are based on academic achievement.

www.auburn.edu/student_info/student_affairs/finaid

The Auburn Advantage

Solid academics and a campus with a strong sense of place make Auburn special. Our alumni recall a friendly, safe campus with a sense of family, caring professors, academic variety and challenges, and extracurricular activities that helped them grow into leaders.

- Classic college town atmosphere
- Outstanding instruction
- Hands-on lab projects
- Research opportunities
- Co-op education and internships
- Scholarship opportunities
- Mentoring
- Academic support
- Large and highly qualified faculty
- Diversified student body
- Resume service for alumni
- Job search assistance
- Variety of career opportunities

Contact Us

Charlotte Burleson, Office Administrator
Department of Civil Engineering
238 Herbert Engineering Center
Auburn University, AL 36849
334.844.6287
burleson@eng.auburn.edu
www.eng.auburn.edu/civil

www.auburn.edu/student_info

Civil engineers play a vital role in constructing facilities that enhance our national prosperity and quality of life.
Civil Engineering

Auburn University's Department of Civil Engineering, one of nine departments in the Samuel Ginn College of Engineering, is the largest civil engineering program in Alabama. Each year we graduate approximately half of the state's civil engineers and are ranked in the nation's top 25 in the number of undergraduate degrees awarded annually. We are known for our comprehensive and challenging curriculum, for our strong and dedicated faculty, for outstanding teaching, and for the achievements of our graduates.

The department is housed in the John M. Hartwell III Engineering Center, a modern facility featuring state-of-the-art laboratories and classrooms that provide an excellent learning environment.

Undergraduate Curriculum

- Bachelor of Civil Engineering
- Bachelor of Science in Environmental Science

The Department of Civil Engineering offers required and elective courses in the following specialty areas of civil engineering:

- Construction engineering and management
- Environmental engineering
- Geotechnical engineering
- Hydraulic engineering
- Pavements and materials engineering
- Structural engineering
- Transportation engineering

Transportation Engineering

From shipments of raw materials and finished goods to personal travel, our national transportation system influences our quality of life. Civil engineers respond to this need through the planning, design, construction, and operation of facilities for all modes of transportation. Civil engineers in all specialties are called upon to evaluate the environmental impacts of transportation improvements; manage railroad, highway, and airport systems; and oversee construction of safety improvements to our nation's transportation system.

Civil engineers' career opportunities can range from the design of a new highway to planning an airport facility; from developing computerized traffic surveillance and control systems to investigating the feasibility of mass transit for urban areas; and from directing the rehabilitation of an urban freeway to developing long-range transportation plans.

Transportation Engineering

Environmental Engineering

From proper disposal of wastes to minimizing the damaging effects of human activities, environmental engineers help protect people. They are involved with issues such as air and water quality, excessive noise and vibrations, harmful radiation, hazardous waste, and solid waste management problems.

Undergraduate civil courses relate to air, water and solid pollutio; control; water quality; and vector control; water resource development; planning; hydraulics; and hydrology.

Geotechnical Engineering

Working with the earth to satisfy the needs of society, geotechnical engineers build from the ground down, creating foundations for structures such as bridges, buildings, roads and dams—working closely with environmental and hydraulic engineers to protect groundwater from pollution. Almost every project involves geotechnical engineering because almost every project involves soil.

Geotechnical engineering graduates find work with employers such as consulting firms, contractors, and government agencies.

Hydraulic Engineering

Hydraulic engineering is the application of principles of fluid mechanics to infrastructure problems of analysis, design, construction and maintenance. Structures, roadways and foundations are impacted by wind and water. Comprehension of air and water flow problems is integral to understanding, protecting and restoring the environment. Solving hydraulic engineering problems is part of most civil engineering design and is therefore important in the education of all civil engineers. An introductory course in hydraulics is required of all civil engineering students.

Specialty courses in surface water and ground water are offered. Methods of problem solving include laboratory experimentation, field investigation, and applied mathematical and computational analysis.

Pavements and Materials Engineering

The design of any structure, facility or system begins with a fundamental understanding of key material properties of the individual components, from nuts and bolts fasteners to the chemical admixtures and concrete in bridge piers. Pavements — an integral component of any transportation infrastructure — combine essential elements of materials, geotechnical, and structural engineering to produce facilities that connect our country from coast to coast.

Engineers in the pavements and materials area are responsible for roadway design, construction, maintenance and rehabilitation.

Structural Engineering

Structural engineers design new buildings and evaluate and improve the load resistance capabilities of existing structures, such as buildings that may have been damaged during an earthquake. They must be knowledgeable about the behavior of deformable bodies, about the sources, magnitudes and probability of occurrence of applied loads, and about material properties, design philosophies and governmental design codes.

Structural engineers design new structures and evaluate and improve the load resistance capabilities of existing structures, such as buildings that may have been damaged during an earthquake. They must be knowledgeable about the behavior of deformable bodies, about the sources, magnitudes and probability of occurrence of applied loads, and about material properties, design philosophies and governmental design codes.

Civil Engineering

Environmental Engineering

From proper disposal of wastes to minimizing the damaging effects of human activities, environmental engineers help protect people. They are involved with issues such as air and water quality, excessive noise and vibrations, harmful radiation, hazardous waste, and solid waste management problems.

Undergraduate civil courses relate to air, water and solid pollution control; water quality; and vector control; water resource development; planning; hydraulics; and hydrology.

Geotechnical Engineering

Working with the earth to satisfy the needs of society, geotechnical engineers build from the ground down, creating foundations for structures such as bridges, buildings, roads and dams—working closely with environmental and hydraulic engineers to protect groundwater from pollution. Almost every project involves geotechnical engineering because almost every project involves soil.

Geotechnical engineering graduates find work with employers such as consulting firms, contractors, and government agencies.

Hydraulic Engineering

Hydraulic engineering is the application of principles of fluid mechanics to infrastructure problems of analysis, design, construction and maintenance. Structures, roadways and foundations are impacted by wind and water. Comprehension of air and water flow problems is integral to understanding, protecting and restoring the environment. Solving hydraulic engineering problems is part of most civil engineering design and is therefore important in the education of all civil engineers. An introductory course in hydraulics is required of all civil engineering students. Specialized courses in surface water and ground water are offered. Methods of problem solving include laboratory experimentation, field investigation, and applied mathematical and computational analysis.

Pavements and Materials Engineering

The design of any structure, facility or system begins with a fundamental understanding of key material properties of the individual components, from nuts and bolts fasteners to the chemical admixtures and concrete in bridge piers. Pavements — an integral component of any transportation infrastructure — combine essential elements of materials, geotechnical, and structural engineering to produce facilities that connect our country from coast to coast. Engineers in the pavements and materials area are responsible for roadway design, construction, maintenance and rehabilitation.

Structural Engineering

Structural engineers design new buildings and evaluate and improve the load resistance capabilities of existing structures, such as buildings that may have been damaged during an earthquake. They must be knowledgeable about the behavior of deformable bodies, about the sources, magnitudes and probability of occurrence of applied loads, and about material properties, design philosophies and governmental design codes.

Structural engineers design new buildings and evaluate and improve the load resistance capabilities of existing structures, such as buildings that may have been damaged during an earthquake. They must be knowledgeable about the behavior of deformable bodies, about the sources, magnitudes and probability of occurrence of applied loads, and about material properties, design philosophies and governmental design codes.