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Abstract

The conventional approach, widely practiced in the industry today, for testing analog

circuits is to ensure that the circuit conforms to data-sheet limits on all its specifications.

However, such a specification based test methodology suffers from high levels of test cost

stemming from long test-times on expensive test equipment. In recent years the situation

has only worsened with the advent of mixed signal systems on chip (SoC), to a point where

analog circuit test cost is often found to be as much as 50% of the total test cost in spite of

analog portions occupying less than 5% of the chip area.

To alleviate the analog circuit test cost problem, a number of techniques exist in the

literature that can be broadly classified as (a) fault-model based test or (b) alternate test.

Fault model based test techniques direct their tests to identify faults in circuit components

much like their digital circuit test counterparts resulting in a test approach that can be

easily automated and relies on readily available output measurements on inexpensive test

equipment. On the other hand, alternate test techniques test a circuit by building a regression

model relating a few easily observable output parameters as signatures of the circuit to the

actual circuit specification.

Both these test paradigms for analog circuit test, however, have limited industry accep-

tance due to a lack of confidence in the defect level and yield loss that the test procedures

can guarantee in the face of high manufacturing process variation and low signal levels that

are characteristic of modern analog circuits. An important reason for the (typically) high

defect level and yield loss resulting from the use of either of these two test paradigms is the

unavailability of easily obtainable circuit outputs that are (a) sufficiently sensitive to circuit

component values and (b) have a high degree of correlation with circuit specifications.
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The main objective of this thesis is to design analog test signatures (and associated

test procedures) that are (i) sensitive enough to capture even small variations in circuit

components, and (ii) sufficiently correlated to circuit specifications and yet obtainable at

limited or no additional hardware and input signal design effort. Additional objectives of this

thesis are to: 1) Extend the use of the new signatures to diagnose faulty circuit components

in analog circuits. 2) Use the test signatures to distinguish faults resulting from defects

caused by manufacturing process related variations. 3) Evaluate the theoretical bounds on

the achievable defect level and the resulting yield loss of fault model based test procedures

relying on these signatures.

The sensitivity of the proposed test signatures is enhanced by an exponential transforma-

tion, called V-Transform. The new test signatures and associated procedures are evaluated

using three metrics test time, defect level (test escapes), and yield loss. We analyze the

proposed signatures theoretically in addition to extensive computer simulations and hard-

ware measurements on common RF/analog circuits such as filters and low noise amplifiers.

A representative result of one of our experiments is as follows: For 400 low noise amplifier

circuits that were tested, we find that the proposed V-transform based signatures resulted

in smaller test escape (≈ 2%) and yield loss (≈ 3%) when compared to other prevailing

alternate test or fault-model based test methods, while significantly reducing test time (by

as much as 50%) compared to the traditional specification based test methods.
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Chapter 1

Introduction

1.1 What are RF/Analog/Mixed-Signal Circuits?

“RF/Analog/Mixed-signal” is a label associated with circuits that have a portion of

their operating input, or output, or both input and output, consisting of continuous-time,

continuous-amplitude signals, as opposed to digital circuits that have both their operating

input and output consisting of discrete-time, quantized-amplitude (Boolean) signals.

RF circuits can be broadly classified as circuits that process signals in the high-frequency

(ranging from a low of 20 kHz all the way up to 60 GHz or higher) domain. Examples include

low noise amplifier (LNA), mixer, filter, and voltage controlled oscillator among others.

Analog circuits are a bigger class of circuits, in that, they encompass all continuous-

time, continuous-amplitude signal processing circuits. As such RF circuits can be thought of

as a subset of analog circuits operating in the high-frequency range [103]. Examples include

dc power supply circuits such as regulators, op-amps, and signals conditioning circuits.

Mixed-signal circuits are those that function as a bridge between the digital and the

analog worlds, in that one of their operating input (output) is continuous-time, continuous-

amplitude (known as analog) signal, while the output (input) is discrete-time, discrete-

amplitude (known as digital) signal. Examples include analog-to-digital converters (in-

put = analog, output = digital), and digital-to-analog converters (input = digital, out-

put = analog). Digital circuits have both their inputs and outputs in the discrete-time

discrete-amplitude domain. Figure 1.1 illustrates the input/output domain distribution of

RF/analog/mixed-signal and digital circuits with example circuits for each type.
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Figure 1.1: Distribution of input/output functions of different types of circuits.

1.2 Role of RF/Analog/Mixed-Signal Circuits in Today’s Digital World

The nature of information produced in the world around us is analog, that is, the

myriad information sources–such as sensors, be it video, audio, heat, light, or radio frequency

(RF)–generate signals in a continuous-amplitude, continuous-time fashion. On the other

hand, today’s computing is leveraging the digital microprocessor revolution where most

computation happens digitally in a large monolithic piece of silicon. Consequently, any

processing of these signals calls for a bridge between the analog and digital worlds. Analog-

to-digital converter (fittingly named) is a typical circuit that functions as a bridge. There

are many other analog circuits needed before the signal becomes bridgeable like signal-

conditioning circuits that make use of amplifiers, filters and so on.

Similarly, the radio waves transmitted in free air by today’s ubiquitous cell-phones are

relayed by virtue of those waves being high-frequency analog signals [74]. At the trans-

mitting as well as the receiving end of such a wireless communication system, processing
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Figure 1.2: Hypothetical picture illustrating different blocks that make use of analog/RF
modules in a typical RF-SoC (for mobile devices).

(coding/decoding) of radio signals is accomplished by several RF or analog circuit blocks

such as low noise amplifiers, phase-locked loops, mixers, and filters [104].

Analog amplifiers are also used at the digital chip boundaries acting as buffers to drive

the pins with adequate amounts of current [50]. Direct-current (dc) power-supply required

to power digital or analog circuits are composed of analog circuitry. Virtually any system-

on-chip (SoC) or custom integrated circuit conceivable ends up having a portion of analog

circuitry for accomplishing one or more of the tasks noted above. In other words, analog is

everywhere in todays digital world. Figure 1.2 shows the RF/analog circuit portions in a

typical RF-SoC of today. Notice that RF/analog circuits contribute to roles from powering

up the chip to enabling communication with the external world.

1.3 Analog Test Versus Digital Test

Digital circuits have succinct fault models (like the stuck-at fault) allowing the use of

“structural” tests that target specific faults instead of testing for the entire functionality

of the circuit. They serve as effective replacements of functional tests, thereby obviating

long test times that would have otherwise been necessary for running functional tests even

on a moderately-sized digital circuit. Consider for example an n-input, m-output, g-gate
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digital circuit (without memory elements like flip-flops); testing such a circuit exhaustively

for functionality can take 2n vectors in the worst-case [33]. Clearly the number of vectors

needed to test the circuit is exponential in the number of inputs in the circuit. On the other

hand by targeting faults individually (based on a fault model), the number of test vectors

needed to test the complete circuit is bounded by the number of faults to be targeted.

For this example, it is of the order of m + n + g. Consequently, fault model based tests

considerably reduce the number of test vectors needed when compared to functional tests

for large digital circuits. Common structural defects (e.g., signal line short to power and/or

ground rails or other signal lines) in integrated circuits are easier to model as faults in digital

circuits due to the fact that the deviant behavior in the presence of a fault can be defined

concisely (for example, as an incorrect logic value, of which there are only two possibilities–1

or 0) at any node in the digital circuit. This simplicity in fault-modeling is an important

factor contributing to the prevalence of structural testing in digital circuits.

In contrast, analog circuits propagate signals through them in a continuum of signal

values, requiring a large number of test signals to test the circuit. The deviant behavior in

a faulty analog circuit can take a whole spectrum of incorrect values. For example, if the

acceptable range of voltage at some node in an analog circuit is [Vnom − Vtol, Vnom + Vtol],

then the faulty behavior can take a whole spectrum of values outside this nominal range.

One possible fault model for this situation could be to have a resistor tied to the supply rail

and changing the value of that resistor to emulate the incorrect spectrum of voltage values.

Unfortunately, there is no one resistance value (or fault-size) that can change the voltage at

the node to all incorrect values in the spectrum.

A number of resistor values have to be used to sample the faulty voltage spectra suf-

ficiently. So a large number of fault-injections may be necessary to model a fault even at

a single node of an analog circuit. This complexity of fault models makes the model-based

testing of analog circuits an unsuitable proposition. The prevalent practice in the industry

is to use a large set of signals to functionally qualify or test the circuit. Applying these test
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Figure 1.3: Mixed-signal System-on-Chip (SoC) showing size of analog block as a fraction
of total die area. Analog interface contributes to about 30% of the total die area. Chip
micrograph courtesy of Neolinear [107].

signals to test analog circuits can take disproportionately large amounts of time. An often-

quoted number is that analog test take as much as 50% of the total test-time in spite of the

analog circuitry occupying less than 15% of the die-area [2]. See for example the micrographs

of two mixed-signal system-on-chip (SoC) integrated circuits shown in Figures 1.3 and 1.4.

Both have fairly complex analog features, yet the analog circuit size is no greater than 30%.

1.4 Important Challenges in RF/Analog/Mixed-signal Circuit Testing

Previous sections show that analog circuits find their way on almost every system-

on-chip type of integrated circuit besides dedicated custom-analog circuits. Heterogeneous

integration, increasing wafer sizes, and very fine device geometry have contributed to an

increase in analog circuit failure modes that can be harder to catch, degrade the circuit

specification in ever more subtle ways, and impact revenue with higher defect level and

consequent customer returns. Added to that, innovations in test technology have not kept

up with the decreasing manufacturing cost per transistor. As can be seen in the plot in
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Figure 1.4: Mixed-signal System-on-Chip (SoC) showing size of analog block as a fraction
of total die area. Analog interface contributes to about 12% of the total die area. Chip
micrograph courtesy of Frank Op’t Eynde, Alcatel [107].

Figure 1.5, test cost has remained fairly constant with the passing of years, while the cost

of manufacturing a transistor has dropped steadily [1]. Furthermore, though analog circuits

contribute less than 10-20% of the chip area, they account for over 50% of the test cost [2].

This can also be noticed in from the plot in Figure 1.5 where the analog test cost per

transistor is almost an order of magnitude higher than digital test cost per transistor.

Test cost stemming from long test-times on expensive ATE is the underlying theme of

important test problems in analog/mixed signal circuits.

1. Non-linear, continuous-time, continuous-amplitude nature of analog circuits:

Most analog circuits are non-linear, continuous-time, and continuous amplitude in

nature and that makes it a computational challenge to both implement automatic test

generation algorithms, and store the large amounts of waveform data that is to be

applied to the circuit-under-test in a production test environment.
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Figure 1.5: Manufacturing cost per transistor on a die has steadily decreased, while test cost
per transistor has remained almost constant [1, 2]. Around 2014, it is expected that testing
a transistor will cost more than manufacturing one. Also of note is that the analog/mixed-
signal test cost per transistor is almost 10 times that of the digital test cost per transistor.

2. “Functionally-good-enough” testing does not cut the deal:

Testing if a circuit is good-enough (or functional) for some specifications can be rel-

atively easy, but extracting the absolute value of that specification can involve sig-

nificantly higher effort. For example, in specification testing an RF transceiver, the

circuit can be qualified as good if it passes a simple loop-back test. In a loop-back test,

the transmitter is tied back to the receiver and the transceiver is considered “pass,”

if it meets all the receiver specifications, but to make sure that its specifications meet

all the regulatory compliance requirements and binning it within a performance bin

can be more difficult. Further not all wireless standards permit concurrent operation

of transmit and receive modes in a transceiver (which is a prerequisite for loop-back

test), and designing the circuit enable this capability can involve major design effort

and consequent cost.
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3. Inadequate signal visibility at the circuit output:

Analog circuits for specific functions can be small and deeply embedded within a larger

circuit. Bringing out these signals to the pads without degrading the signal quality can

be a challenge. Further the measurement inaccuracies due to noise (and consequent

lack of repeatability) may call for longer measurement times to average out any noise

induced errors. Such measurement errors due to noise is uncommon in digital circuits

due to the inherent noise margins.

4. Process variation has made life difficult not only for designers, but also for test engi-

neers:

Random manufacturing process variation can have significant impact on analog perfor-

mance parameters. This is because analog circuits are designed with stringent match-

ing requirements (for example, transistors in both the legs of a current-mirror cir-

cuit [50, 51] should be a replica of each other lest we risk a high offset current in one

branch and the resulting non-linearity if the circuit were to be used in an amplifier).

Traditionally testing for sizable manufacturing defects has been the primary concern

during test. With process variation induced local variation of circuit parameters, distin-

guishing between random process variations and recurring small manufacturing defects

can be difficult if the deviation in nominal functional performance and defective cir-

cuits is small. This is an important concern in analog circuits much like the problem

encountered in distinguishing small-delay faults from process variation induced delay

faults in digital circuits.

In the next section, we review the efforts spent on RF/Analog circuit testing and diag-

nosis since the early second-half of the twentieth century.
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1.5 A Brief History of RF/Analog Test and Diagnosis

Majority of the circuits before the 1960s were analog. These circuits were usually made

with discrete components on printed-circuit-boards. There were minimal, if any, monolithic

integrated circuits. The traditional research focus was not as much on testing these circuit

boards as it was on diagnosis of faulty components on the circuit board. The challenge

traditionally lay in determining which component was at fault, so that the broken circuit

could be fixed by replacing the faulty component causing the faulty output. This was so

because integrated circuits were still nascent, and it was expensive to discard the entire circuit

board instead of replacing the few faulty components. The premise was that if there are any

circuits that are bad, it is probable that the faulty components could be identified based on

certain uniquely associable attributes of the outputs to the components in the circuit. Many

researchers [17, 19, 46, 62, 64, 73, 87, 144, 150] proposed several unique and interesting

solutions to the diagnosis problem, which is essentially a fault localization problem. In

addition, researchers have also worked on the fault-prediction problem [11, 108, 109, 149],

where the circuit output is continuously monitored to predict if any of the circuit-components

are about to fail, so they can be replaced in advance of an actual failure. Clearly fault-

prediction is a more challenging problem than fault-diagnosis. We will first examine the

different fault-diagnosis techniques that have been proposed in literature.

1.5.1 Taxonomy of Analog Circuit Fault-Diagnosis Techniques

Several different criteria could be used for categorizing fault-diagnosis techniques. The

popular method of classification is based on the stage in the testing at which simulation of

the circuit is undertaken [97, 106, 110]:

• Simulation-before-test, and

• Simulation-after-test.

Figure 1.6 [17] shows a taxonomy of fault-diagnosis techniques based on the above criteria.
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Figure 1.6: A possible classification of analog circuit fault-diagnosis techniques [17].

Fault Dictionary Based Diagnosis

Fault-dictionary techniques classified under simulation-before-test techniques in Fig-

ure 1.6 are similar to the widely used fault-dictionary based diagnosis approaches for digital

circuits [7, 33]. The first step is to define the most likely faults that can be expected in

a given circuit. Defining faults is an important step as the dictionary-size is limited by

number of faults defined. An appropriate number of test responses are then captured by

simulating the circuit-under-test (CUT) by injecting the defined faults one-by-one, such

that unique identification of each fault can be possible by deductive reasoning based on the

captured responses for all the applied tests before actually subjecting the circuit in question

to test. At the time of test, the captured responses are used to identify the fault or local-

ize it to a small ‘ambiguity-set’ of faults. The test responses can be captured in frequency

domain [31, 88, 89, 133, 148] or in the time domain [113, 132, 147], or as a combination of

both [78, 114].
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Diagnosis Based on Parameter Identification Techniques

Parameter identification techniques, grouped under simulation-after-test approach in

Figure 1.6 involves estimating the deviation in nominal values of circuit components based

on voltage/current measurements made at specific nodes in the circuit-under-test for a known

input response. The nominal component values and topology of circuit-under-test is known

a priori. The deviations in the component values from their nominal values is uniquely

determined by solving the set of linear or non-linear equations of the circuit (as determined

by the circuit topology). Such circuits for which component values are uniquely determinable

based on a few measurements are said to be element-value-solvable [20, 21, 22] circuits and

are amenable to parameter identification techniques.

Diagnosis Based on Fault Verification Techniques

Fault verification techniques are based on the premise that for a circuit of nc components,

with nm measurements taken at test, all the faulty elements (nf in number) can be uniquely

identifiable if nf is very small, such that the inequality nf << nm < nc is satisfied. The

faulty elements are identified by checking the consistency of certain equations which are

invariant on the changes in the faulty component values [49, 69, 105, 146].

Approximation Techniques for Diagnosis

Approximation techniques are able to localize faults with limited number of measure-

ments. Two prominent types of approximation techniques are probabilistic [30, 71] and

optimization-based [60, 81, 102]. In probabilistic diagnosis techniques all the circuit fault-

simulation is done before test and can be classified under simulation-before-test. Their work-

ing principles are very similar to the dictionary based approach. Optimization techniques,

on the other hand, optimize some pre-determined criterion to find the most likely faulty

element. For example, the L2 approximation technique [81, 102] uses weighted least squares
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Figure 1.7: A possible classification of analog circuit test techniques.

criterion in identifying the–most-likely faulty element–the element that has undergone the

largest deviation from its nominal value.

However, with the advent of integrated circuits, things began to change. Cost of man-

ufacturing even complex circuits, with fairly large component counts, was cheaper than

building the bulky boards. The focus slowly shifted from finding the faulty component, or

diagnosis, to finding out if the overall circuit behaved as it was designed to behave. We will

now examine taxonomy of efforts in analog circuit testing that are geared towards different

aspects of the test problem, all of which can be either categorized as aiming to reduce the

analog test cost, or increase the testability of the circuit and test-quality.

1.5.2 Taxonomy of RF/Analog Circuit Test Techniques

Figure 1.7 shows the taxonomy of test techniques for analog/RF circuits. The different

analog test techniques that are proposed in literature can be classified under three broad

categories: functional, structural, and alternate (combination of functional and structural)

testing. We shall now review each of the categories and sampling of different test techniques

that have been proposed under each of those categories.
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Figure 1.8: Specification testing of analog/mixed-signal circuits in a production test setting.

Specification-Based Testing

The traditional and widely prevalent approach to analog/RF test has been to test the

circuit specifications against a list of acceptable limits for each of those specifications. The

circuit is deemed to be “Pass,” if all its specifications are within the acceptable limits; else

it is considered “Fail”. Figure 1.8 shows an illustrative picture of how specification based

testing is carried out in a production test setting. This approach, though widely prevalent,

is expensive even for a pass/fail type of test. The higher test cost stems from large amounts

of input stimulus to be applied on the circuit-under-test for measuring all the specifications

contributing to the test time on expensive test equipment [32, 79, 91, 112]. In addition, there

is the simulation overhead to develop the input stimulus needed for production testing of all

specifications [66, 82, 153].

Fault-Model Based Test Techniques

In fault-model based test techniques, the primary objective is to abstract the many

physical defects that occur in manufacturing into its electrical equivalent such that tests

can target these faults instead of the circuit specifications. The expectation is that testing

for these faults will sufficiently cover all the specifications and will do so in a shorter time

than the time required for testing the specifications themselves. Typical fault models for
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analog circuits are component opens and shorts that mimic large defects that can signifi-

cantly deviate the behavior of the component. Such faults are known as catastrophic faults.

Examples of catastrophic faults can be resistor open or short. Defects that lead to small

deviations in functionality of the circuit components are modeled as fractional drifts from

the nominal values of the circuit element (usually beyond the component tolerance limit),

and are called parametric faults or soft faults. Examples of parametric faults can be ±10%

deviation in the nominal value of the resistor. Number of such fault models have been de-

veloped for different components in analog circuits [141]. Different fault-model based test

schemes [29, 36, 53, 55, 57, 58, 80, 90, 100, 101, 130, 131] have been proposed in literature.

We briefly discuss a representative set of these techniques.

Sensitivity based test and diagnosis techniques [57, 58, 129] constitute testing circuit

specifications using the sensitivity of the specifications to components in the circuit. The

sensitivity, SC
p , of a circuit-specification, C, to a circuit-component, p, is defined as:

SC
p =

δC
C
δp
p

(1.1)

This sensitivity of specifications to the circuit components is leveraged to both test

and diagnose the circuit for component faults. Whenever a circuit component undergoes

deviation from its nominal, fault-free value, multiple circuit specifications can be tracked,

and along with the sensitivity matrix relating the specifications to the circuit components,

the most likely circuit component at fault can be determined.

Transfer function based testing [53] proposes the use of modeling the circuit in the

frequency domain through the transfer function of the circuit’s output with respect to its

input. By using a frequency rich input signal, the transfer function of the circuit-under-test

is estimated. This transfer function is then compared with the ideal circuit transfer function

and any deviation in the coefficients of transfer function beyond an acceptable threshold

is treated as a “fail,” and a full conformance of all coefficients to pre-determined limits on
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the coefficient values is treated as a “pass.” The acceptable limits on the coefficients are

determined by evaluating the coefficients at different fault sizes of the circuit components.

Alternate Test Techniques

Alternate test techniques [56, 151, 156, 154] combine the prowess of fault-model based

testing with specification-based testing, in that, they target certain key circuit variables such

as currents and voltages (commonly referred to as circuit-signatures) at critical nodes instead

of the actual specification, yet they deliver a go/no-go judgment on the circuit-under-test

based on whether or not the CUT meets all the specification limits set in the data-sheet.

Chapter 2 discusses this approach in detail and we reserve this discussion until then.

1.5.3 Efforts on Test Cost Reduction for Analog Circuits

Test Re-ordering

Test re-ordering involves changing the sequence of specification tests in order to optimize

the test sequence for some predetermined objective. Test sequence can be optimized to reveal

the failure modes of the devices, which may be helpful early in the production test setting

for yield ramp up by identifying the most common causes of failure and fixing them [83, 85].

As the process flow matures, an objective to be optimized for is the test-time since test-time

(the time spent by DUT on an expensive ATE) is an important contributor to the overall

production test cost [25].

Redundant Test Elimination

Production test cost is primarily due to the long test-times (stemming from the long-

input stimuli) needed for RF/analog devices. With specification tests, where different spec-

ifications are tested for in sequence, there is a possibility of dropping certain specifications

that may subsume other specifications. For example in case of an ADC testing if the integral
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non-linearity (INL) specification is ±0.5 LSB and differential non-linearity (DNL) specifi-

cation is ±1 LSB, then there is no need for a separate code sweep measurement for DNL

specification testing. Eliminating tests for such redundant specifications has been proposed

in [84]. Similarly, depending on the chip fall out data from the failed chip statistics, one may

be able to leverage the tests that uncover the most defects or fail the most chips. Keeping

such tests in the test flow helps retain the quality of the shipped parts while cutting out

unnecessary tests that do not add value to the test flow. Techniques based on statistical

analysis to eliminate redundant tests for analog and mixed-signal circuits have been proposed

in [24, 25].

DfT Efforts in the Analog/Mixed-Signal Test Domain

As predicted in the test/manufacturing cost curve shown in Figure 1.5, over the years,

the cost of putting a transistor on the die has gone down exponentially and is converging

with the cost of testing one. It is predicted that the future cost of circuits will be limited by

its test cost. This has led to the explosion of techniques to drive the test cost lower by adding

extra hardware on the chip such that the manufacturing cost incurred in the process is offset

by the test cost savings. Several researchers have developed design-for-test (DfT) techniques

needed to address this problem. The most prominent industry-wide DfT for analog portions

in a mixed-signal SoC is the IEEE standard analog bus for test access to analog blocks in

a DUT. Literature on DfT other than test access for analog and mixed signal circuits has

primarily been on built-in self test schemes for ADC/DAC [14, 145].

1.6 Contributions of this Thesis

The principal problem addressed in this thesis is that of designing high-sensitivity

circuit-test signatures that are capable of uncovering both parametric and catastrophic faults

in RF/analog/mixed-signal circuits. In addition, the proposed signatures have high corre-

lation with specifications of the circuit so that these circuit-signatures can replace actual
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circuit specifications as is the practice in alternate test framework for RF/analog and mixed-

signal circuits. Further, these signatures have been demonstrated to work well for diagnosis

of faulty circuit elements. Finally, bounds on the defect level and fault coverage achievable

while using these signatures is theoretically evaluated and validated through simulations on

a number of benchmark RF/analog circuits.

1.7 What Lies Ahead?

Chapter-wise summary of the thesis is as follows. First chapter provided an introduction

to the analog test problem, important challenges today in this area, and the existing methods

in the literature. In the second chapter, entitled “Signature Based Testing of RF, Analog

and Mixed-Signal Circuits,” we take a closer look at the use of signatures in lieu of actual

specifications. This chapter forms the basis of the remaining chapters in the thesis which

builds on the notion of signatures, thereby proposing stronger and better ones as we go try

to increase their sensitivity and correlation to specification measurements. In Chapter 3, we

introduce polynomial coefficients of the circuit function which are used as signatures in a

closed-form sense to build a model that can accurately detect parametric faults (also known

as soft faults). Chapter 4 describes an enhanced sensitivity transformation on polynomial

coefficients called V-transform that can deliver almost confidence levels of up to 98% in the

detected parametric faults. Chapter 5 discusses an alternate signature that needs little or

no input signal design effort. It leverages moments of the probability distribution at the

output to uncover faults that are otherwise hidden. It uses a simple distribution function

of the input. Chapter 6 provides a formulation, with examples to compute upper bound

on the defect level and lower bound on the fault coverage achievable in signature-based test

methods. We draw conclusions in Chapter 7, with some thoughts forward-looking ideas that

can further enhance the correlation of circuit-signatures to specification through adaptive

testing.
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Chapter 2

Signature Based Testing of RF, Analog and Mixed-Signal Circuits

2.1 The Need for Circuit Signatures

In a conventional specification based test methodology, as we saw in the previous chap-

ter, the circuit is classified as “good”or “bad” depending on whether it conforms to the de-

signed specifications listed on the data-sheet. To make the measurements on these circuits,

expensive instrumentation is needed and devices end up spending considerable amounts of

time on these expensive instruments. Circuit signatures circumvent this problem by elimi-

nating the need for measuring the circuit specifications themselves. Instead, signature based

testing seeks to replace expensive specification measurement with a direct measurement that

is low-cost, in that, it either does not need expensive instrumentation or can be measured

in a fraction of the time required to make a full-specification measurement on an expensive

tester. Examples of circuit signatures include the supply current drawn by the circuit for a

pre-determined input [10], the temperature at specific neighborhoods of the circuit [5], out-

put voltage envelope [155, 156], the spectral coefficients of the supply current and voltage,

and a combination of one or more of these [18].

2.2 Attributes of an Ideal Signature

Good signatures are required to be able to replace specification measurements. But the

buyer of an integrated circuit is interested in the specification of the part being purchased.

So an indirect measurement or signature that seeks to replace specification should be a very

good replacement of the circuit-specification. This means, the correlation of the circuits

chosen signature to the actual specification should be very good. Further, for signatures to
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Figure 2.1: Scatter plot of measurements showing the signature on the X-axis and the circuit
specification on the Y-axis. An ideal signature will have all points lined up along a straight
line such that there is perfect correlation between the signature and the specification.

be practically useful, it should be possible to extract them in a production test setting within

a fraction of the time required to extract the actual specification measurements themselves.

We now briefly go over each of these attributes:

1. High sensitivity signatures detect sufficiently small parametric faults, thus augmenting

existing fault model based test schemes. Signatures should be sensitive to changes

in component values beyond their tolerance range. This will ensure they signatures

are capable of detecting small parametric faults that are the result of local process

variations.

2. High correlation with circuit specifications augmenting alternate circuit test schemes.

Signatures are expected to replace actual circuit specifications, so they should be as

accurate as possible in predicting the specifications. The more accurate the capability

of the signature, the smaller is the yield loss and defect level. Figure 2.1 shows the
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scatter plot where the points lined up together (resulting from good correlation between

specification and signature) will lead to fewer parts misclassified.

3. Small area overhead requires little additional hardware on chip for production testing.

4. Large number observables handy in diagnosis.

5. Suitable for large class of circuits – there are a variety of classes of analog circuits and

the concerned test scheme should be amenable to all of them.

6. Aids distinction of small defects from process variation (PV) induced faults – current

need in advanced technology nodes.

7. Amenable to self-test building structures on the circuit, and using signatures that aid

in testing the circuits themselves can speed-up the test process as all the fabricated

dies can be tested in parallel.

2.3 Analog Circuit Testing Based on Signatures: Test Methodology

1. Selecting good signatures

The choice of test signatures can be a significant factor in the efficacy of the signature

test scheme for testing any circuit. A signature that is capable of capturing most

specifications over a wide range of values will ensure high test quality, i.e., a test that

results in low defect level and yield loss.

2. Designing good input signals

Input signals that bring out all the circuit characteristics are important for ensuring

that the signatures serve as a good replacement to the circuit specification. In fact,

the combination of input signal and output signature works in tandem to provide

the needed robustness for replacing an actual circuit specification with the circuits

signature.
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3. Monte-Carlo circuit simulation

Circuit components can vary about their nominal values; it is important that the

signature chosen have good correlation to the specification over the variation range of

the component. Heuristically chosen limits for the component variation is from −3σ

to +3σ. Numbers for σ range from a low of 2% (for thin film resistors) to a high of

15% (advanced technology node transistors) for different components.

4. Defect filtering

This step involves choosing the simulation output by weeding out the outliers to build

a good regression model. While it is important the signatures correlate well to the

specification over the nominal component range, it is important that there is no cor-

relation between the circuit specification and signature for the outlying component

values. Defect filtering is a step that ensures any outliers in the circuit simulation are

weeded out so that only the ideal circuit response is available for regression modeling

between signature and the circuit specification. Popular defect filters use techniques

from machine-learning for distinguishing the circuit-output [137, 139, 140] of a nom-

inally good circuit (whose specification is within some predefined range) from a bad

one.

5. Building a regression model or a neural network classifier

Regression modeling is a step where a relational model relating the circuit signatures

to the circuit specification that the signature seeks to replace is formulated. Multi-

variate Adaptive Regression Splines (MARS) [47] is a method that efficiently builds

a regression model with only a small number of training samples - essentially pairs of

specification and signature for different inputs applied to the circuit in question [59].

6. Predicting specification from indirect measurements

Once an adequate regression model is available, the device-under-test (DUT) is applied

with a stimulus to elicit a response, which is then used to predict the specification of
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the circuit. If the regression model predicts a specification that is significantly deviant

from the nominal range of acceptable specifications, then the DUT is classified as

faulty; whereas if the deviation of the predicted specification is close to the boundary

of the acceptable specification range, then the DUT can be either retested with actual

specification measurements to minimize misclassification or the test procedure can rely

solely on the indirect measurement (or signature), in which case there can be a defect

level/yield loss penalty.

7. Improving the models in closed loop

The regression model built in the previous step can be continuously tuned to improve

the correlation between test signature and specification. This is typically done by

having an online training method that updates the regression model based on the actual

specification measured on a small sample of training devices right off the production

line.

2.4 Conclusion

This chapter introduced the signature based test scheme and described the important

constituent steps in this test methodology. In the next chapter we will examine polynomial

coefficients as a circuit-test signature. We will demonstrate its use for fault detection and

diagnosis on common analog circuits such as elliptic filter and low noise amplifier.
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Chapter 3

Polynomial Coefficients as Test Signatures

3.1 Introduction

An analog circuit is called either linear or non-linear based on the type of input-output

behavior it displays [38, 68]. Linear circuits preserve linearity and homogeneity of output

with the input, and can be described by a linear constant coefficient differential equation [27].

Typically, in the time domain, the output y(t) may be expressed as a function of input x(t),

as follows:
M∑

m=1

am
dmy

dtm
+ a0y =

N∑
n=1

bn
dnx

dtn
+ b0x (M > N) (3.1)

where am, bn ∈ ℜ ∀ m,n ∈ Z. The general solution for (3.1) is of the form (3.2), where

H(t) ∈ ℜ is a real function of time t.

y(t) = H(t)x(t) (3.2)

Linear circuits are mainly composed of passive components [38]. Typical examples include

RC and LC ladder filters and resistive attenuators among others.

In case of non-linear circuits, coefficients am, bn ∀m, n in (3.1) are functions of x and a

general solution in time domain for such circuits can be expressed as in (3.3), where Hn ∀n

are real functions of t.

y(t) =
n=N∑
n=1

Hn(t)x
n(t) (3.3)

Testing of linear circuits is well studied and several methods can be found in the litera-

ture [53, 85, 90, 93]. Savir and Guo [53] describe a method in which the circuit is modeled

as a linear time-invariant (LTI) system. They obtain the transfer function of the circuit in
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Vin Vout

R1 R2

C1 C2

Figure 3.1: A second order low pass filter.

the frequency domain, which is of the following form:

H(s) =

M∑
i=0

ais
i

N∑
i=0

bisi
(M < N) (3.4)

The coefficients of the transfer function, i.e., ai and bi, are all functions of circuit parameters

and these are tracked to monitor drift in circuit parameters. The CUT is subjected to

frequency rich input signals and the output voltage alone is observed. With these input-

output pairs they estimate the transfer function coefficients of CUT. Next they compare these

transfer function coefficient estimates with the ideal circuit transfer function coefficients,

which are known a priori. The CUT is classified faulty if any of the estimated coefficients is

beyond the tolerable range. For example, the circuit shown in Figure 3.1 is a second order

low pass filter and has a transfer function given below:

H(s) =
1

(R1R2C1C2) s2 + (R1C1 + (R1 +R2)C2) s+ 1
(3.5)

Clearly the coefficients of the transfer function, b0 = 1, b1 = (R1C1 + (R1 +R2)C2) , b2 =

R1R2C1C2, are functions of circuit parameters R1, R2, C1, C2. Assuming single parametric

faults, they find the minimum drift in any of the circuit component values that will cause the

coefficients b1 or b2 (b0 here is a constant) to drift outside a tolerance range. However, this

method [53] necessarily needs the CUT to be linear, as a frequency domain transfer function

is possible only for a LTI system.
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Figure 3.2: Cascade amplifier

Several methods have been proposed for parametric fault testing of non-linear circuits [6,

35, 37, 40, 44, 52, 75, 99]. A prominent method in the industry is the IDDQ testing where

quiescent current from the supply rail is monitored and sizable deviations from its expected

value are monitored. However, this requires augmentation of the CUT. For example, in

the simplest case a regulator supplying power to any sizable circuit has to be augmented

with a current sensing resistor and an ADC (for digital output). Subsequently, analysis

is performed on the sensed current. IDDQ is found suitable only for catastrophic faults

as the current drawn from the supply may be distinguishable when there is some “large

enough” fault to change the quiescent current by a distinguishable amount. For example,

with resistor R2 being open in Figure 3.2, the current drawn from supply can change by 50%

of its nominal quiescent value. Such faults can typically be found by monitoring IDDQ using a

current sensor. However, parametric deviations, say, less than 10% from their nominal value

cannot be observed using this scheme. This is especially so for the very deep submicron

circuits where the leakage currents can be comparable to the defect induced current [45]. It

is therefore useful to develop a method to detect parametric faults while testing with less

circuit augmentation.

To address the issue of parametric deviation, we would typically need more observables

to have an idea about the parametric drift in circuit parameters. This would mean an increase

in the complexity of the sensing circuit. However, we would also want minimal augmentation

to tap any of the internal circuit nodes or currents. To overcome these seemingly contrasting
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requirements the method intended should have some way of “seeing through” the circuit

with only the outputs and inputs at its disposal. References [53, 93] give such strategies for

linear circuits as described earlier.

To extend this idea to general non-linear circuits we adopt a strategy where we express

the function of the circuit as a polynomial using a Taylor series expansion [72] in terms of

input voltage vin, about the point vin = 0 as follows:

vout = f(vin) = f(0) + f ′(0)
1!
vin +

f ′′(0)
2!
v2in +

f ′′′(0)
3!

v3in+

· · ·+ f (n)(0)
n!

vnin + · · ·
(3.6)

where f(x) is a real function of x.

This method is very general as any analog circuit can be tested using this model. The

technique applies equally well to linear circuits, which are a subclass of the general non-

linear circuits considered in this paper. The accuracy, resolution and observability of faults

uncovered depends on the degree of expansion of the coefficients in (3.7). Ignoring the

higher order terms in (3.6), we can expand vout up to the nth power of vin, which gives us the

approximation in (3.7). In order to increase the available observables to better track down

parametric faults we can expand vout at multiple frequencies. Thus, we will have m× (n+1)

observables where m is the number of tones (frequencies) including DC at which vout is

expanded and n is the degree of expansion [55]:

vout = a0 + a1vin + a2v
2
in + · · ·+ anv

n
in (3.7)

where a0, a1, a2, . . . , an are all real functions of circuit parameters pk∀ k.

A special case of DC test, that detects a subset of faults, was given in a recent paper [125].

Further, we assume that normal parameter variations (normal drift) in a good circuit are

within a fraction α of their nominal value, where α << 1. That is, every parameter pi

26



is allowed to vary within the range pk,nom(1 − α) < pk < pk,nom(1 + α) ∀k, where pk,nom

is the nominal value of parameter pk. Whenever one or more of the coefficient values slip

outside its individual hypercube we get a different set of coefficients reflecting a detectable

fault. Therefore, equation (3.8) describes the hypercube for all parameters that correspond

to either good machine values or undetectable parametric faults [35, 53, 99]:

ai,min < ai < ai,max ∀ i, 0 ≤ i ≤ n (3.8)

The experimental results and ideas presented in this chapter are taken from the pa-

pers [117, 125, 126, 128] by the author. This chapter is organized as follows. Section 2

analyzes the coefficients of the polynomial expansion of the function f(vin) and determines

the detectable fault sizes of parameters. In Section 3, we describe the problem at hand and

discuss the proposed solution with an example. In Section 4, we generalize the solution to an

arbitrarily large circuit. Section 5 presents the simulation results for some standard circuits.

Section 6 outlines the method of fault diagnosis using the proposed method and we conclude

in Section 7.

3.2 Preliminaries

The coefficients ai ∀i 0 ≤ i ≤ n are, in general, non-linear functions of circuit parameters

pk ∀k. The rationale behind using these coefficients as metrics in classifying CUT as faulty

or fault free is based on the dependence of the coefficients on circuit parameters.

3.2.1 Analysis of Polynomial Coefficients

We derive several significant results that are relevant to the subsequent analysis.

Theorem 3.1 If coefficient ai is a monotonic function of all parameters, then ai takes its

limiting (maximum and minimum) values when at least one or more of the parameters are

at the boundaries of their individual hypercube.

27



Lemma 1 If coefficient ai is a non-monotonic function of one or more circuit parameters pi,

then ai can take its limiting values anywhere inside the hypercube enclosing the parameters.

From Theorem 3.1 and Lemma 1 it is clear that by exhaustively searching the space in the

hypercube of each parameter we can get the maximum and minimum values of the polynomial

coefficient. Typically this can be formulated as a non-linear optimization problem to find

the maximum and minimum values of coefficient with constraints on parameters allowing

only a normal drift.

Theorem 3.2 In polynomial expansion of non-linear analog circuit there exists at least one

coefficient that is a monotonic function of all circuit parameters.

From Lemma 1 and Theorem 3.2 we find that circuit parameter deviations have a bearing

on coefficients and monotonically varying coefficients can be used to detect parametric faults

of the circuit parameters.

Theorem 3.3 A continuous non-monotonic function f : ℜ → ℜ can be decomposed into

piecewise monotonic functions as follows:

f(x) = f(x)u(x0 − x) + f(x) (u(x− x0)− u(x− x1))+

f(x) (u(x− x1)− u(x− x2)) + · · ·

+f(x) (u(x− xn−1)− u(x− xn))

(3.9)

where x0, x1, · · · xn are all stationary points of f(x) and

u(x) =

 1 ∀ x ≥ 0

0 ∀ x < 0

Using Theorem 3.3, we can express every polynomial coefficient as a monotonic function

of circuit parameters and thus we can use every coefficient to track the drifts in circuit

parameters.
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3.2.2 Definitions

Definition 1 Minimum size detectable fault (MSDF), (ρ) of a parameter is defined as the

minimum fractional deviation of a circuit parameter from its nominal value for it to be

detectable with all other parameters being held at their nominal values. The fractional devi-

ation can be positive or negative and is named upside-MSDF (UMSDF) or downside-MSDF

(DMSDF), accordingly.

Definition 2 Nearly-minimum size detectable fault (NMSDF), (ρ∗) of a parameter is defined

as some fractional deviation of the circuit parameter from its nominal value with all the

other parameters being held at their nominal values that is close to its MSDF with an error,

ϵ (infinitesimally small). That is,

ϵ = |ρ− ρ∗| ϵ << 1 (3.10)

NMSDF also has notions of upside and downside as in the case of MSDF. In equation (3.10),

ϵ can be perceived as a coefficient of uncertainty about the MSDF of a parameter. Let ψ be

the set of all coefficient values spanned by the parameters while varying within their normal

drifts, i.e.,

ψ = {υ0, υ1, · · · , υn |υ0 ∈ A0, υ1 ∈ A1, · · · , υn ∈ An}

∀k pk,nom(1− α) < pk < pk,nom(1 + α)

Note that by Definitions 1 and 2, ψ includes all possible values of coefficients that are not

detectable. Any parametric fault inducing coefficient value outside this set ψ will result in

a detectable fault.

3.3 Problem Description and Sketch of Solution

We shall first give an illustrative example of calculation of limits for polynomial coeffi-

cients for a simple circuit using MOS transistors. We shall follow this up with MSDF values

for the circuit parameters.
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Example: A two stage amplifier

Consider the cascade amplifier of Figure 3.2. The output voltage Vout in terms of input

voltage results in a fourth degree polynomial equation as follows:

Vout = a0 + a1Vin + a2V
2
in + a3V

3
in + a4V

4
in (3.11)

where the constants a0, a1, a2, a3 are defined symbolically in (3.12) for M1 and M2 operating

in saturation region, as follows

a0 = VDD −R2K
(
W
L

)
M2

{(VDD − VT )
2 +R2

1K
2
(
W
L

)2
M1

V 4
T − 2(VDD − VT )R1

(
W
L

)
M1

V 2
T }

a1 = R2K
(
W
L

)
M2

{4R2
1K

2
(
W
L

)2
M1

V 3
T + 2(VDD − VT )R1K

(
W
L

)
M1

VT}

a2 = R2K
(
W
L

)
M2

{2(VDD − VT )R1K
(
W
L

)
M1

− 6R2
1K

2
(
W
L

)2
M1

V 2
T }

a3 = 4VTK
3
(
W
L

)2
M1

(
W
L

)2
M2

R2
1R2

a4 = −K3
(
W
L

)2
M1

(
W
L

)2
M2

R2
1R2

(3.12)
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Nominal values of VDD = 1.2V, VT = 400mV,
(
W
L

)
M1

= 1
2

(
W
L

)
M2

= 20, andK = 100µA/V 2

are substituted to get coefficients in terms of parameters R1 and R2 as given by,

a0 = 1.2−R2(2.56× 10−3 + 1.024× 10−7R2
1 − 5.12× 10−4R1

a1 = 4.096× 10−9R2
1R2 + 5.12× 10−6R1R2

a2 = 1.28 × 10−5R1R2 − 1.536× 10−8R2
1R2

a3 = 2.56 × 10−8R2
1R2

a4 = 1.6 × 10−8R2
1R2

(3.13)

To find the limiting values of the coefficient a0 we assume the parameters R1 and R2

deviate by fractions x and y from their nominal values, respectively. Maximizing a0 we have

the objective function as given by (3.14), subject to constraints 3.15 through 3.19. Note that

here we have set out to find MSDF of R1. Similar approach can be used to find the MSDF

of R2:

1.2−R2,nom(1 + y){2.56× 10−3 + 1.024× 10−7R2
1,nom(1 + x)2 − 5.12× 10−4R1,nom(1 + x)}

(3.14)

4.096 × 10−9R2
1,nom(1 + x)2R2,nom (1 + y)

+5.12 × 10−6R1,nom(1 + x)R2,nom(1 + y)

= 4.096 × 10−9R2
1,nom(1 + ρ)2R2,nom

+ 5.12 × 10−6R1,nom(1 + ρ)R2,nom

(3.15)
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Table 3.1: MSDF for cascade amplifier of Figure 3.2 with α = 0.05.

Circuit %upside %downside
parameter MSDF MSDF

Resistor R1 10.3 7.4
Resistor R2 12.3 8.5

1.28 × 10−5R1,nom(1 + x)R2,nom(1 + y)

−1.536× 10−8R2
1,nom(1 + x)2R2,nom (1 + y)

= 1.28 × 10−5R1,nom(1 + ρ)R2,nom

− 1.536 × 10−8R2
1,nom(1 + ρ)2R2,nom

(3.16)

2.56× 10−8R2
1,nom(1 + x)2R2,nom(1 + y)

= 2.56× 10−8R2
1,nom(1 + ρ)2R2,nom

(3.17)

1.6× 10−8R2
1,nom(1 + x)2R2,nom(1 + y)

= 1.6× 10−8R2
1,nom(1 + ρ)2R2,nom

(3.18)

−α ≤ x, y ≤ α (3.19)

The extreme values for x and y on solving the set of equations 3.15 through 3.19 are obtained

as, x = −α and y = −α, and this gives us the MSDF value for R1, as ρ,

ρ = (1− α)1.5 − 1 ≈ 1.5α− 0.375α2 (3.20)

Table 3.1 gives the MSDF for R1 and R2 based on above calculation.

3.4 Generalization

In general, the calculation as described above cannot be done for an arbitrarily large

circuit. Such circuits are handled by obtaining a nominal numeric polynomial expansion of

the fault free circuit. This is done by sweeping the input voltage across all possible values and
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noting the corresponding output voltages using any of the standard circuit simulators like

SPICE [4, 98]. Now, the output voltage is plotted against the input voltage. A polynomial

is fitted to this curve and the coefficients of this polynomial are taken to be the nominal

coefficients of the desired polynomial. The circuit is simulated for different drifts in the

parameter values at equally spaced points from inside the hypercube enclosing each circuit

parameter, spaced at a suitably chosen resolution (ϵ). Polynomial coefficients are obtained

for each of these simulations. The maximum and the minimum values of a coefficient in

this search are taken as the limiting values on that coefficient. This process of modeling the

circuit as a polynomial expansion and obtaining limit values on coefficients is repeated at

“key” frequencies of interest. For example, the cut-off frequency in case of a non-linear filter

can be a good candidate for such characterization. Once the limit values on all coefficients

have been determined the CUT is subjected to full range of input at DC and each of the

“key” frequencies. Its response to input sweep is curve fitted to a polynomial of order same

as the fault free circuit. If there are any coefficients that lay outside the limit values of

corresponding coefficients of the fault free circuit, we can conclude the CUT is faulty. The

converse is also true with a high probability that is inversely proportional to coefficient of

uncertainty ϵ. Flow chart in Figure 3.3 summarizes the process of numerically finding the

polynomial and finding the bounds on coefficients. Flow chart in Figure 3.4 outlines the

procedure to test CUT using the described method.

3.5 Experimental Results

Example 1: An Elliptic Filter. We subjected an elliptic filter shown in Figure 3.5 to

Polynomial Coefficient based test. The circuit parameter values are as in the benchmark

circuit maintained by Stroud et al. [70]. We simulated the circuit at four different frequencies.

Two of them were chosen close to its 3dB cut-off frequency (fc), which is 1000Hz. The

estimated polynomial expansions obtained by curve fitting the I/O plots at DC and the

frequencies f = 100Hz, 900Hz, 1000Hz and 1100Hz are given in 3.21 through 3.25 and
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Stop

Find min-max values of each coefficient (Ci) 
from i =1…N across all simulations

Simulate for all parametric faults at the 
simplex of hypercube

Choose frequency for fault simulation

Polynomial Curve fit the obtained I/O data --
find the coefficient values of fault free circuit

Sweep the input voltage across its range 

Repeat process at all chosen 
frequencies

Figure 3.3: Flow chart showing fault simulation process and bounding of coefficients.

the corresponding plots tracing I/O response with polynomial are shown in Figures 3.6

through 3.10. The combinations of parameter values leading to limits on the coefficients for

the tone at 1000Hz are shown in Table 3.5. Further, the pass/fail detectabilities of several

injected faults are tabulated in Table 3.6.

In our ongoing work, we are testing this technique on other common non-linear circuits

like logarithmic amplifiers [63] whose results we will furnish in a forthcoming paper.

vout = 4.5341− 3.498vin − 2.5487v2in + 2.1309v3in − 0.50514v4in + 0.039463v5in (3.21)

vout = 3 + 7.9vin − 11v2in + 4.4v3in − 0.78v4in + 0.049v5in (3.22)
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Figure 3.4: Flow chart outlining test procedure for CUT.

vout = 2.5 + 5.4vin − 8.6v2in + 4v3in − 0.77v4in + 0.054v5in (3.23)

vout = 1.1707 + 2.4132vin − 3.8777v2in + 1.8035v3in − 0.3465v4in + 0.023962v5in (3.24)

vout = 0.23 + 0.48vin − 0.74v2in + 0.34v3in − 0.063v4in + 0.0043v5in (3.25)
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Figure 3.5: Elliptic filter.

Example 2: Low Noise Amplifier (LNA). We simulated a Low noise amplifier shown in

Figure 3.12 for polynomial coefficient based test. Notice that the bias current Ibias shown

in the figure is derived from a current mirror powered by band-gap reference circuitry (not

shown). The circuit parameter values were chosen to meet performance specifications tab-

ulated in Table 3.2. We used parametric faults of sizes α = 5% from their nominal value

to find min-max values of coefficients. Figure 3.13 shows the simulated response at four

different frequencies, namely, f = 1GHz, 10GHz, 15GHz, and 35GHz and the estimated

polynomials obtained by curve fitting a fifth order polynomial are given by equations (3.26)

through (3.29), respectively. To obtain these curves, input offset voltage is varied from 0

through 5V as shown (on X-axis), while measuring the output voltage magnitude at each

of these input voltage points. As we can see in the figure (on the far right), the output

magnitude at 35GHz, drops to about 72% its value at preceding three frequencies, which
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Figure 3.6: DC response of elliptic filter with curve fitting polynomial.
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Figure 3.7: Curve-fit polynomial with coefficients at frequency = 100Hz.
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Figure 3.9: Curve-fitting polynomial with coefficients at frequency = 1000Hz.
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Figure 3.10: Curve-fitting polynomial with coefficients at frequency = 1100Hz.
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Figure 3.12: Low noise amplifier (LNA) schematic.

Table 3.2: LNA specification.
Performance Parameter Nominal Value

Gain (dB) 16
IIP3 (dBm) -18

Noise figure (dB) 9.1
S11 (dB) -16.5

confirms (in close neighborhood of) 35GHz as the 3dB cut-off, and thereby the ultra-wide

bandwidth LNA designed and tested in this example.

Figure 3.14 compares the I/O response of the LNA for three different value of the load

resistance RL.

vout =
(
2.5− 1.498vin − 1.2688v2in + 1.139v3in − 0.88514v4in + 0.039463v5in

)
× 10−3 (3.26)

vout =
(
2.36− 1.348vin − 1.3268v2in + 1.049v3in − 0.63614v4in + 0.04443v5in

)
× 10−3 (3.27)

vout =
(
2.12− 1.267vin − 1.1285v2in − 1.016v3in + 0.88516v4in − 0.052876v5in

)
× 10−3 (3.28)

vout =
(
1.95− 1.068vin + .9268v2in + .786v3in − 0.77324v4in + 0.042v5in

)
× 10−3 (3.29)
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Figure 3.13: I/O response of LNA at four frequencies.

Figure 3.14: Comparison of I/O plots of LNA at 3 different values of load resistance RL =
95kΩ, 100kΩ (nominal), and 105kΩ.

The combinations of parameter values leading to limits on the coefficients are as shown

in Tables 3.3 and 3.4. Some of the circuit parameters are not shown in the table because they

do not appear in any of the coefficients and are kept at their nominal values. Further, results

on pass/fail detectability of few injected faults are tabulated in Table 3.8. Last column in
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Table 3.3: Parameter combinations leading to maximum values of coefficients with α = 0.05
for the LNA.

Component a0 a1 a2 a3 a4 a5
(ohm, nH, fF)

Rbias = 10 10 10 10.5 10.5 9.5 10.5

LC = 1 1 0.95 1.05 0.95 1.05 1

CC1 = 100 95 95 95 95 95 105

L1 = 1.5 1.425 1.5 1.5 1.425 1.575 1.425

L2 = 1.5 1.5 1.425 1.425 1.575 1.5 1.5

Lf = 1 1.05 1.05 1.05 1 1.05 1

Cf = 100 105 95 95 105 95 95

CC2 = 100 95 100 105 95 95 95

Rbias1 = 100k 105k 105k 100k 105k 105k 95k

Rbias2 = 100k 105k 95k 100k 95k 95k 95k

RL = 100k 100k 95k 95k 100k 105k 100k

Table 3.8 shows the diagnosed results of a few injected faults using sensitivity of polynomial

coefficients to circuit parameters as described in Section 3.6.

3.6 Fault Diagnosis

Fault diagnosis using sensitivity of output to circuit parameters has been investigated in

the literature [129]. We have extended that approach exploiting the sensitivity of polynomial

coefficients to circuit parameters. The advantage of the new approach is an improved fault

diagnosis without circuit augmentation. Sensitivity of ith coefficient Ci to k
th parameter pk

is represented by SCi
pk

and is given by:

SCi
Pk =

pk
Ci

∂Ci

∂pk
(3.30)
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Table 3.4: Parameter combinations leading to Min values of coefficients with α = 0.05 for
the LNA.

Component a0 a1 a2 a3 a4 a5
(ohm, nH, fF)

Rbias = 10 10 9.5 9.5 10 10 10

LC = 1 1.05 0.95 0.95 1 1 0.95

CC1 = 100 100 105 95 100 95 105

L1 = 1.5 1.425 1.5 1.575 1.575 1.575 1.575

L2 = 1.5 1.5 1.575 1.5 1.425 1.425 1.5

Lf = 1 1.05 1.05 0.95 0.95 1 0.95

Cf = 100 105 95 95 105 105 105

CC2 = 100 95 105 100 105 95 105

Rbias1 = 100k 100k 95k 105k 105k 95k 100k

Rbias2 = 100k 100k 105k 95k 95k 105k 95k

RL = 100k 95k 100k 95k 100k 105k 95k

3.6.1 Computation of Sensitivities

Numerical computation of sensitivities given by (3.30) is accomplished by introducing

fractional drifts (=α) in each component (pk ∀k); simulating the circuit and measuring the

fractional drift in each coefficient of the polynomial resulting from curve fitting operation.

This way the numerical sensitivities are computed and a dictionary is maintained for sensi-

tivities. The complexity in computation of sensitivities is linear in the number N of circuit

parameters, i.e., O(N).

3.6.2 Diagnosing Parametric Faults

Restricting ourselves to single parametric faults, we find the descending order of sensi-

tivities of coefficients (with respect to circuit parameter) that have exceeded their limiting

values. The parameter with highest sensitivity is said to be at fault with a probability

P(δpk|δCi) (which can be interpreted as the confidence in diagnosing fault), given by (3.31),

where δpk is the suspected drift in parameter pk and δCi is the measured drift in coefficient.

P(δpk|δCi) =
SCi
Pkδpk
δCi

(3.31)
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3.6.3 Deducing Faults

At each frequency, the above process of diagnosis is repeated. This gives the set of fault

sites above a certain confidence level at each of these frequencies. The intersection of sets of

fault sites at all the frequencies (and at DC) gives a fault site with much higher confidence

level. That is, if the confidence of diagnosis of a fault site at one frequency is say Pi, then

the resulting confidence level after diagnosis at all the frequencies is as follows[94]:

P = 1−
i=N∏
i=1

(1− Pi) (3.32)

where N is the number of frequencies (including DC) at which the circuit is diagnosed.

The single parametric faults for the elliptic filter in Figure 3.5 were diagnosable with confi-

dence levels up to 60% at each frequency. The resulting confidence level after fault deduction

from the four frequencies at which it was diagnosed is about 98.9%. The diagnosis results

are tabulated in Table 3.7 for several injected single parametric faults. Another observation

worthy of mention here is that the cardinality of set of fault sites detected at frequencies close

to cut-off frequency is greater than that at frequencies closer to DC. This can be attributed

to higher sensitivity of coefficients to circuit parameters at these frequencies. As a result,

fault coverage is better by observing coefficient drifts at frequencies close to fc. However

these frequencies tend to be unfavourable for diagnosis as more than one parameter is likely

to have displaced the coefficients out of their respective hypercubes. We can overcome this

by looking at the set of fault sites obtained at much lower frequencies than fc (here DC and

100Hz).

3.7 Conclusion

A new approach for testing non-linear circuits based on polynomial expansion of the

circuit function was proposed in this chapter. By expanding polynomial coefficients at critical

frequencies the fault coverage of test for parametric (and catastrophic) faults is significantly
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Table 3.5: Parameter combinations leading to Max and Min Values of coefficients with
α = 0.05 at 1000Hz for the elliptic filter.

Circuit Parameters (Resistance in Ω,Capacitance in Farad)
Nominal Maximum values Minimum values
Values a0 a1 a2 a3 a4 a5 a0 a1 a2 a3 a4 a5

R1 = 19.6k 18.6k 18.6k 20.5k 20.5k 20.5k 18.6k 18.6k 18.6k 18.6k 18.6k 20.5k 20.5k
R2 = 196k 205k 205k 205k 205k 186k 186k 205k 186k 186k 205k 205k 205k
R3 = 147k 139k 139k 154k 139k 139k 139k 139k 139k 154k 139k 139k 139k
R4 = 1k 950 950 1.05k 1.05k 1.05k 1.05k 1.05k 950 1.05k 950 950 1.05k
R5 = 71.5 75 67 75 67 67 75 75 75 67 67 75 67
R6 = 37.4k 35k 39k 39k 35k 35k 39k 39k 39k 35k 35k 35k 35k
R7 = 154k 146k 146k 161k 161k 146k 146k 146k 146k 161k 161k 146k 146k
R8 = 260 247 273 273 247 247 273 273 247 273 247 273 247
R9 = 740 703 777 703 703 777 703 703 703 777 703 703 703
R10 = 500 475 525 525 475 525 525 475 525 475 475 525 475
R11 = 110k 115k 115k 115k 104k 104k 104k 115k 115k 104k 115k 104k 104k
R12 = 110k 104k 104k 115k 115k 115k 115k 115k 115k 104k 104k 115k 104k
R13 = 27.4k 28.7k 26k 26k 26k 28.7k 28.7k 26k 26k 28.7k 26k 28.7k 26k
R14 = 40 42 38 42 38 38 42 42 38 42 42 38 42
R15 = 960 912 912 912 912 912 1k 1k 1k 912 1k 912 912
C1 = 2.67n 2.5n 2.5n 2.5n 2.5n 2.5n 2.5n 2.8n 2.5n 2.8n 2.8n 2.8n 2.5n
C2 = 2.67n 2.5n 2.8n 2.8n 2.5n 2.8n 2.8n 2.8n 2.8n 2.5n 2.8n 2.5n 2.8n
C3 = 2.67n 2.8n 2.8n 2.8n 2.5n 2.8n 2.8n 2.8n 2.8n 2.8n 2.5n 2.8n 2.8n
C4 = 2.67n 2.5n 2.8n 2.5n 2.5n 2.5n 2.5n 2.5n 2.5n 2.8n 2.5n 2.5n 2.8n
C5 = 2.67n 2.5n 2.5n 2.5n 2.5n 2.5n 2.8n 2.8n 2.8n 2.8n 2.8n 2.8n 2.8n
C6 = 2.67n 2.5n 2.8n 2.5n 2.8n 2.5n 2.8n 2.5n 2.5n 2.8n 2.8n 2.8n 2.5n
C7 = 2.67n 2.5n 2.8n 2.8n 2.8n 2.8n 2.5n 2.8n 2.5n 2.5n 2.5n 2.5n 2.8n

improved, yielding a minimum size of detectable faults in some circuit components as low as

5%. The method has been extended to sensitivity based fault diagnosis with probabilistic

confidence levels in parameter drifts. Further the expansion at multiple tones leads to a

higher confidence level (up to 98.9%) in diagnosing single parametric fault sites. In the next

chapter, we shall discuss the use of V-transform for further enhancing the fault detection

capabilities of the polynomial coefficients.
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Table 3.6: Results of some injected faults at different frequencies for the elliptic filter.

Injected Coefficients out of Bounds at Detected
fault DC f1=100Hz f2=900Hz f3=1000Hz f4=1100Hz

R1 down 15% a0 − a4 a1 − a4 a3, a5 a2, a4 a1, a2 Yes

R2 down 5% a2, a5 a1, a3 a1, a5 a1, a2, a5 a1, a2 Yes

R3 up 10% a1, a2, a3 a3, a5 a0, a3, a4 a1, a3, a4 a1, a5 Yes

R4 down 20% a0 − a3 a1 − a2 a2, a3 a1, a2, a3 a2, a3 Yes

R5 up 15% a0, a5 a1 a0, a2 a0, a2, a3 a3 Yes

R6 up 5% − a1, a2 a2, a3, a5 a1, a3 a1 Yes

R7 down 10% a2, a4 a3, a5 a0, a1, a2 a1, a4, a5 a2, a3 Yes

R8 up 10% − a2 a0, a4 a0, a2, a5 a3, a4 Yes

R9 down 5% − a3, a2 a1, a2, a4 a2, a3, a5 a1, a3 Yes

R10 up 15% − a1, a4 a1, a3, a4 a0, a1, a4 a1, a2 Yes

R11 down 10% a0, a2 a3, a4 a0, a1 a1, a2, a4 a1, a2 Yes

R12 down 15% a0, a4 a1, a3 a1, a2, a3 a1, a2 a2, a5 Yes

R13 up 5% − a3, a5 a1, a2 a1, a2, a4 a0, a2 Yes

R14 up 20% − a1, a3 a0, a3, a4 a0, a1, a2 a3, a4 Yes

R15 up 5% − a4 a3, a5 a0, a1, a3 a0, a5 Yes

C1 down 10% − a4, a5 a4, a5 a1, a2, a3 a1, a4 Yes

C2 up 10% − a2, a3 a1, a2 a2, a3, a4 a0, a4 Yes

C3 down 15% − a1, a3 a0, a1, a2 a4, a5 a0, a1 Yes

C4 down 10% − a0, a1 a1, a2 a2, a3 a2, a5 Yes

C5 up 5% − a0, a1 a1, a5 a1, a2 a3, a4 Yes

C6 up 15% − a3, a4 a1, a2, a4 a3, a4, a5 a1, a2 Yes

C7 up 15% − a1, a4 a1, a3, a4 a1, a3, a5 a3, a4 Yes
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Table 3.7: Parametric fault fiagnosis with confidence levels of ≈ 98.9% for the elliptic filter.

Injected fault Diagnosed fault sites at Deduced
DC 100Hz 900Hz 1000Hz 1100Hz fault site

R1 down 15% R1,R4 R1 R1,R2 R1,R2,C1 R1,C1 R1

R2 down 5% R2 R2,C1 R2,R3,C1 R2,R3 R2,C1 R2

R3 up 10% R1,R3 R3,C3 R3,R4,C3 R3 R3,C3 R3

R4 down 20% R1,R4 R1,R4 R2,R4,C1 R1,R2,R4 R1,R2,R4 R4

R5 up 15% R5 R5,C2 R4,R5 R4,R5,C2 R5,R6,C3 R5

R6 up 5% − R6,C2 R6,R7 R6,C2,C4 R6,C2,C3 R6

R7 down 10% R3,R7 R7,C3 R3,R7 R3,R6,R7 R3,R7,C3 R7

R8 up 10% − R6,R8 R8,R9 R6,R8 R8,R9 R8

R9 down 5% − R8,R9 R8,R9 R9,R10 R8,R9 R9

R10 up 15% − R10 R10,C6 R10 R10,C6 R10

R11 down 10% R11,R12 R11 R11,C5 R11,R12 R11,R12,C5 R11

R12 down 15% R11,R12 R11,R12 R12,C5 R12,C5 R12,C5,C7 R12

R13 up 5% − R13,C5 R13,C7 R13,C5,C6 R13,C5 R13

R14 up 20% − R14 R14,R15 R14,R15 R14,R15 R14

R15 up 5% − R13,R15 R14,R15 R14,R15,C5 R14,R15 R15

C1 down 10% − R2,C1 R2,C1 R2,C1 R2,C1 C1

C2 up 10% − R5,C2 C2,C4 C2 C2 C2

C3 down 15% − C3 R3,C3 C3 C3 C3

C4 down 10% − R6,C4 C2,C4 C2,C4 C2,C4 C4

C5 up 5% − C5 R12,C5 C5 C5 C5

C6 up 15% − R10,C6 C6,C7 C6,C7 C6,C7 C6

C7 up 15% − C6,C7 C7 C6,C7 C6,C7 C7

Table 3.8: Results of test and diagnosis of some injected faults for LNA.

Circuit Parameter Coefficients that are Detected Diagnosed
out of bounds fault sites

Rbias down 25% a0 − a4 Yes Rbias

LC down 15% a2, a5 Yes LC or CC1

CC1 up 10% a1, a2, a3 Yes CC1 or LC

L1 down 25% a0 − a4 Yes L1

L2 up 15% a0, a4 Yes L2

Lf up 10% a1, a2 Yes Lf or Cf

Cf up 10% a4, a5 Yes Lf

CC2 down 10% a4, a5 Yes CC2

47



Chapter 4

V-Transform Coefficients as Test Signatures

4.1 Introduction

Non-linear circuit testing has been well studied and different methods have been pro-

posed for finding parametric faults [6, 35, 37, 40, 44, 52, 75, 99]. Prominent among them in

the industry is the IDDQ based testing where current from the supply rail is monitored and

sizable deviation from its quiescent value is reported. However, this requires augmentation

of the CUT. For example, in the simplest case a regulator supplying power to any sizable

circuit has to be augmented with a current sensing resistor and an ADC (for digital output)

and then there is subsequent analysis to be performed on sensed current. Further IDDQ is

suitable only for catastrophic faults as the current drawn from the supply is distinguishable

only when there is some “big enough” fault so as to change the current drawn from the

supply from its quiescent value to a region where it is distinguishable. For example with

resistor R2 being open in Figure 4.1, the current drawn from supply can change by 50% of

its quiescent value. Such faults can typically be found by monitoring IDDQ using a current

sensor. However parametric deviations say lesser than 10% from its nominal value cannot

be observed using this scheme, specially so in the deep submicron era where the leakage

currents can be comparable with defect induced current [45]. The other approach for testing

parametric faults that can be found in literature [65, 67, 134, 135, 137] is based on the use of

neural networks. Neural network based approaches propose the use of circuit observer blocks

to track the output for a set of input signals which is used for training the neurons. The

trained set of neurons is then used to estimate variations in the output for a standard input

stimulus. This method, however, suffers from large amounts of training required and the

consequent increase in test application time that the scheme is prohibitive for even medium
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sized analog circuits at production. More recently, the use of Volterra series coefficients was

proposed to estimate non-linear characteristics of the system. These coefficients are then

used for testing the circuit with a pseudo random input stimulus [95, 96]. This method

however suffers from the high computational requirement of estimation of Volterra series

coeffcients for every circuit at production which can increase the test cost significantly. It

is therefore interesting to develop a method to detect parametric faults with little circuit

augmentation while keeping the test access mechanism simple and the test application time

to a minimum.

To address the issue of parametric deviation, we would typically need more observables

to have an idea about the parametric drift in circuit parameters. This would mean an increase

in complexity of the sensing circuit. However, we would also want only little augmentation

to tap any of the internal circuit nodes or currents. To overcome these seemingly contrasting

requirements the method intended should have some way of “seeing through” the circuit

with only the outputs and inputs at its disposal. References [53, 93] have accomplished this

sort of a strategy for linear circuits in a different context as described next.

Guo and Savir [53] describe a method based on transfer function of a circuit under test

(CUT). The transfer function, H(s), of the CUT is expressed as:

H(s) =

M∑
i=0

ais
i

N∑
i=0

bisi
(M < N) (4.1)

Here, ai and bi are referred to as transfer function coefficients (TFCs). The CUT is subjected

to frequency rich input signals and the output at these frequencies is observed. With these

input-output pairs they estimate the TFCs of CUT. These coefficients are now compared

with the ideal circuit TFCs, which are known a priori. The CUT is classified faulty if any

of the estimated coefficients are beyond the tolerable range. This method necessarily needs

the CUT to be linear, as transfer functions are possible only for LTI systems.
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To extend the above idea to more general non-linear circuits we adopted a strategy

in [122, 125, 126] where we expand the function of the circuit as a polynomial by the Taylor’s

series expansion about the input voltage mangitude vin at a given frequency, as follows:

vout = f(vin) = f(0) + f ′(0)
1!
vin +

f ′′(0)
2!
v2in +

f ′′′(0)
3!

v3in+

· · ·+ f (n)(0)
n!

vnin + · · ·
(4.2)

where f(vin) is a real function of vin. Ignoring the higher order terms in (4.2), we can expand

vout up to the nth power of vin, which gives us the approximation in (4.3):

vout = a0 + a1vin + a2v
2
in + · · ·+ anv

n
in (4.3)

where a0, a1, a2, . . . , an are all real-valued functions of circuit parameters pk, ∀k. Further

assume that normal parameter variations (normal drift) in a good circuit are within a frac-

tion α of their nominal value, where α << 1. This means that every parameter pi is allowed

to vary within the range pk,nom(1 − α) < pk < pk,nom(1 + α), ∀k, where pk,nom is the nom-

inal value of parameter pk. Whenever one or more of the coefficient values slip outside its

individual hypercube we get a different set of coefficients that reflects a detectable fault.

Therefore, equation (4.4) describes a hypercube for all parameters that correspond to either

good machine values or undetectable parameter faults [35, 53, 99]:

ai,min < ai < ai,max ∀ai, 0 ≤ i ≤ n (4.4)

In the latter portion of this chapter we address an important problem that has kept

analog circuit test cost high [86], namely, distinguishing between faults induced due to process

variation. For example, we would like to distinguish random drifts in tox, W , L, and doping

densities of devices in an integrated circuits from those resulting from manufacturing defect

induced (parametric) faults (e.g., Lithographic errors, etching errors, etc.) that lead to a

substantial deviation of a circuit from its nominal behavior but are not large enough to render

the circuit dysfunctional. We quantify an error distance measure between faults induced due
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to process variation with those induced due to manufacturing defects. We can then estimate

the probabilities of a detected fault being caused by process variation or by a manufacturing

defect. We make this estimation based on maximizing a posteriori probabilities of the two

kinds of errors conditioned on the event that a fault is detected.

Most of the material in this chapter is taken from recently published papers [118, 119]

by the author. This chapter is organized as follows. Section 4.2 we state previously pub-

lished results [124] on the polynomial expansion of function f(vin) and notions of detectable

fault sizes. Section 4.3 outlines V-transform and the resulting sensitivity improvement. In

Section 4.4 we describe the problem at hand and discuss the proposed solution with an

example. In Section 4.5 we generalize the test solution to an arbitrarily large circuit. Sec-

tion 4.6 establishes, 1) a method to distinguish between process variation induced faults and

those induced due to manufacturing defects and 2) identify the fault site if it is of the latter

kind. Section 4.7 presents the simulation results for a standard elliptic filter. We conclude

in Section 4.9.

4.2 Background

The coefficients ai, ∀0 ≤ i ≤ n, are in general non-linear functions of circuit parameters

pk, ∀k. The rationale in using these coefficients as metrics in classifying CUT as faulty or

fault free is based on the premise of dependence of coefficients on circuit parameters.

Theorem 4.1 If coefficient ai is a monotonic function of all parameters, then ai takes its

limit (maximum and minimum) values when at least one or more of the parameters are at

the boundaries of their individual hypercube.

Lemma 2 If coefficient ai is a non-monotonic function of one or more circuit parameters

pi, then ai can take its limit values anywhere inside the hypercube enclosing the parameters.

By Theorem 4.1 and Lemma 2 it is clear that by exhaustively searching the space in the

hypercube of each parameter we can get the maximum and minimum values of the polynomial
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coefficient. Typically this can be formulated as a non-linear optimization problem to find

the maximum and minimum values of coefficient with constraints on parameters allowing

only a normal drift.

Theorem 4.2 In polynomial expansion of Non-Linear Analog circuit there exists at least

one coefficient that is a monotonic function of all the circuit parameters.

In conclusion, from Lemma 2 and Theorem 4.2, circuit parameter deviations have a

bearing on coefficients and the monotonically varying coefficients can be used to detect

parametric faults of the circuit parameters [125].

Definition 3 A minimum size detectable fault (MSDF), ρ, for a parameter is defined as

the minimum fractional deviation of the circuit parameter from its nominal value for it to be

detectable with all other parameters held at their nominal values. The fractional deviation can

be positive or negative and is named upside-MSDF (UMSDF) or downside-MSDF (DMSDF)

accordingly.

If ψ is the set of all coefficient values spanned by the parameters while varying within

their normal drifts, i.e.,

ψ = {υ0, υ1, · · · , υn |υ0 ∈ A0, υ1 ∈ A1, · · · , υn ∈ An}

∀k pk,nom(1− α) < pk < pk,nom(1 + α)

then by definitions of MSDF, ψ includes all possible values of coefficients that are not de-

tectable. Any parametric fault inducing coefficient value outside the set ψ will result in a

detectable fault.
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4.3 The V-Transform

We define V-transform coefficients as follows: if C1, C2 · · ·Cn are polynomial coefficients

of CUT then their V-transform coefficients, VC1 , VC2 · · ·VCn , are

VCi
= eγC

′
i ∀ 0 ≤ i ≤ n (4.5)

where C ′
i are the modified polynomial coefficients defined indirectly as follows

dC ′
i

dpj
=

∣∣∣∣dCi

dpj

∣∣∣∣ ∀ 0 ≤ i ≤ n (4.6)

The modification C ′
i according to (4.6) ensures that the modified polynomial coefficients are

monotonic with the polynomial coefficients. Further, the V-transform coefficients (VTC) are

exponential functions of the modified polynomial coefficients and γ is a sensitivity parameter

chosen according to the desired sensitivity. The gain in sensitivity of V-transform coefficients

to circuit parameters over the sensitivity of ordinary polynomial coefficients is given by

S
VCi
pi

SCi
pi

=

∣∣∣dCi

dpi

∣∣∣ γeγC′
i × pi

eγC
′
i

dCi

dpi
× pi

Ci

= γCi (4.7)

Choices of γ = 3, for instance, results in a 3 times more sensitive coefficient to circuit

parameters.

4.4 A Problem and an Approach

We shall first illustrate with an example the calculation of limits of the polynomial

coefficients for a simple circuit using MOS transistors. We shall follow this up with MSDF

values for the circuit parameters.

Example. Two stage amplifier: Consider the cascade amplifier shown in Figure 4.1. The

output voltage Vout in terms of input voltage results in a fourth degree polynomial:

Vout = a0 + a1Vin + a2V
2
in + a3V

3
in + a4V

4
in (4.8)
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Vdd

R2R1 IM1 IM2

M1 M2

Vin

Vout

Figure 4.1: Cascade amplifier.

where constants a0, a1, a2, a3 are defined symbolically in (4.9) for transistors M1 and M2

operating in the saturation region. Nominal values of VDD = 1.2V , VT = 400mV ,
(
W
L

)
M1

=

1
2

(
W
L

)
M2

= 20, and K = 100µA/V 2 are used for this example.

a0 = VDD −R2K
(
W
L

)
M2

 (VDD − VT )
2 +R2

1K
2
(
W
L

)2
M1

V 4
T−

2(VDD − VT )R1

(
W
L

)
M1

V 2
T


a1 = R2K

(
W
L

)
M2

{
4R2

1K
2
(
W
L

)2
M1

V 3
T + 2(VDD − VT )R1K

(
W
L

)
M1

VT

}

a2 = R2K
(
W
L

)
M2

{
2(VDD − VT )R1K

(
W
L

)
M1

− 6R2
1K

2
(
W
L

)2
M1

V 2
T

}

a3 = 4VTK
3
(
W
L

)2
M1

(
W
L

)2
M2

R2
1R2

a4 = −K3
(
W
L

)2
M1

(
W
L

)2
M2

R2
1R2

(4.9)

To find the limit values of the coefficient a0 we assume that parameters R1 and R2

deviate by fractions x and y from their nominal values, respectively. To maximize a0 we

have the objective function (4.10) subject to constraints (4.11) through (4.15). Note that

here we have set out to find MSDF of R1. Similar approach can be used to find the MSDF

of R2.
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1.2−R2,nom(1 + y)


2.56× 10−3+

1.024 × 10−7R2
1,nom(1 + x)2

−5.12 × 10−4R1,nom(1 + x)

 (4.10)

4.096 × 10−9R2
1,nom(1 + x)2R2,nom (1 + y)

+5.12 × 10−6R1,nom(1 + x)R2,nom(1 + y)

= 4.096 × 10−9R2
1,nom(1 + ρ)2R2,nom

+ 5.12 × 10−6R1,nom(1 + ρ)R2,nom

(4.11)

1.28 × 10−5R1,nom(1 + x)R2,nom(1 + y)

−1.536× 10−8R2
1,nom(1 + x)2R2,nom (1 + y)

= 1.28 × 10−5R1,nom(1 + ρ)R2,nom

− 1.536 × 10−8R2
1,nom(1 + ρ)2R2,nom

(4.12)

2.56× 10−8R2
1,nom(1 + x)2R2,nom(1 + y)

= 2.56× 10−8R2
1,nom(1 + ρ)2R2,nom

(4.13)

1.6× 10−8R2
1,nom(1 + x)2R2,nom(1 + y)

= 1.6× 10−8R2
1,nom(1 + ρ)2R2,nom

(4.14)

−α ≤ x, y ≤ α (4.15)

The extreme values for x and y are obained by solving the set of equations 4.10 through 4.15.

We get x = −α and y = −α and this gives the MSDF for R1, as

ρ = (1− α)1.5 − 1 ≈ 1.5α− 0.375α2 (4.16)

Table 4.1 gives the MSDF for R1 and R2 based on the above calculation.
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Table 4.1: MSDF for cascade amplifier of Figure 4.1 with α = 0.05.

Circuit %upside %downside
parameter MSDF MSDF

Resistor R1 10.3 7.4
Resistor R2 12.3 8.5

4.5 Generalization

The computation of the previous section is too complex for arbitrarily large circuits.

Such circuits are handled by first obtaining a nominal numeric polynomial expansion for

them. This is done by sweeping the input voltage across all possible values and noting the

corresponding output voltages. The output voltage is plotted against the input voltage. A

polynomial is fitted to this curve and the coefficients of this polynomial are taken to be the

nominal coefficients for the desired polynomial. A V-transform curve is now obtained based

on the polynomial curve using the transformation in equation (4.5).

The circuit is simulated for different drifts in the parameter values at equally spaced

points from inside the hypercube enclosing each circuit parameter, spaced ϵ apart. Polyno-

mial coefficients and hence V-transform coefficients are obtained for each of these simulations.

The maximum and minimum values of coefficient in this search are taken as the limiting val-

ues for that coefficient. Once the limiting values for all coefficients have been determined

the CUT is subjected to a DC sweep at the input and the output response is curve-fitted

using a polynomial of the same order as that used for the fault free circuit. The V-transform

coefficients for CUT are now obtained. If there are any coefficients that lay outside the

limiting values of the corresponding coefficients of the fault free circuit, we conclude that

CUT is faulty. The converse need not be true as there could be other specifications, the

circuit needs to meet, which are not captured by polynomial based test. Flowchart I in Fig-

ure 4.2 summarizes the process of numerically finding the V-transform coefficients and their

bounds. Flowchart II in Figure 4.2 outlines a procedure to test CUT using the V-transform
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i < N ?

Subject CUT
to further tests
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No
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Flowchart I Flowchart II

Figure 4.2: Fault simulation process and bounding of coefficients (Flowchart I), and complete
test procedure (Flowchart II).
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coefficients. The bounds on coefficients of fault free circuit are found a priori as shown in

Flowchart I of Figure 4.2.

4.6 Fault Diagnosis

Fault diagnosis involves the location of likely fault sites in a CUT given that the CUT has

failed an applied test giving a particular response. We use V-transform coefficients (VTC) to

characterize the response of the circuit at different frequencies (about 4 or 5 frequencies are

sufficient for most circuits with less than 100 circuit elements), by obtaining its input-output

response over the entire input range. Process variation induces a fault-free variation of say σ,

about the mean value of every VTC. Any value beyond σ from the mean µ of VTC indicates

a circuit failure. Assuming a normal distribution for circuit parameter variation, we can

find the probability distribution of the coefficients by Monte-Carlo simulation for process

variation of all circuit parameters. Once the Monte-Carlo distributions for the coefficients of

fault free circuit are obtained we can inject desired sizes of parametric faults (those that are

induced due to manufacturing defects) and obtain the new probability distribution of faulty

circuit under process variation.

As an illustration, Figure 4.3 shows the probability density distributions obtained with

(broken line) and without (solid line) parametric fault. There are three distinct regions in the

probability space of any coefficient Ck. Region R is the fault-free space because coefficients

at all frequencies are within the desired limits. Region 1 where dominant mechanism of faults

are due to PV of circuit parameters and Region 2 where dominant mechanism of faults is due

to manufacturing defects (also called parametric fault). The cross-over point of these two

distributions gives the equiprobable region of faults, where we can have faults due to either

of the mechanism with the same likelihood. We denote this point on the coefficient axis as

Cth. Measuring the value of coefficient C of CUT, we can now determine the likelihood of the

nature of fault mechanism. That is, C ∈ [µ,Cth] =⇒ failures due to PV are more in number

and C ∈ [Cth, µ
′] =⇒ failures due to parametric faults are more in number. The confidence
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R

G1 G2

Figure 4.3: Probability distribution of polynomial coefficient C under a parametric fault
(broken line) as opposed to that with only process variation (solid line).

of this distinction is given by the relative magnitudes of the two probability density function

G1 and G2 at the point C on coefficient axis. Once we know, that the fault mechanism is due

to a manufacturing defect, we can predict the fault site based on knowledge of the sensitivity

of the coefficient to various circuit parameters at different frequencies [128, 129]. A fault

dictionary is maintained for faults against circuit parameters at different frequencies. On

measuring a parametric fault, the most likely fault site is deduced by intersection of fault

sites that can contribute to this fault at most of frequencies. The confidence level (P) of this

deduction is given by:

P = 1−
i=N∏
i=1

(1− P i) (4.17)

where N is the number of frequencies (including DC) at which the circuit is diagnosed and

Pi is the confidence of fault diagnosis at ith frequency.

4.7 Simulation Results

We simulated an elliptic filter shown in Figure 4.4 for V-transform coefficient based

test. The circuit parameter values are as in the benchmark circuit maintained by Stroud et

al. [70]. Our Monte-Carlo simulation included 50,000 circuit instances, with process varia-

tions sampled as zero mean and standard deviation = ±10% of nominal circuit component

value. This was repeated for different injected parametric faults to obtain distribution of the

coefficients under both parametric faults and process variation (PV) of circuit components.
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Figure 4.4: Elliptic filter.

Table 4.2: Parameter combinations leading to maximum values of V-transform coefficients
with α = 0.05 for the elliptic filter.

Circuit Vc0 Vc1 Vc2 Vc3 Vc4 Vc5
Parameter (Ω)

R1 = 19.6k 18.6k 20.5k 20.5k 20.5k 18.6k 18.6k
R2 = 196k 186k 205k 186k 186k 186k 205k
R3 = 147k 139k 154k 154k 154k 139k 154k
R4 = 1k 950 1010 1010 1010 1010 1010
R5 = 71.5 70 80 80 70 80 70
R6 = 37.4k 37.4k 37.4k 37.4k 37.4k 37.4k 37.4k
R7 = 154k 161k 161k 146k 161k 146k 146k
R11 = 110k 115k 115k 104k 115k 104k 104k
R12 = 110k 104k 115k 104k 104k 104k 104k

We used parametric faults of sizes α = 5% from their nominal value to find min-max

values of coefficients. Figure 4.5 shows the computed response and the estimated polynomial

obtained by curve fitting:

vout = 4.5341− 3.498vin − 2.5487v2in

+ 2.1309v3in − 0.50514v4in + 0.039463v5in

(4.18)

The combinations of parameter values leading to limits on the coefficients are as shown

in Tables 4.2 and 4.3. Some of the circuit parameters are not shown in the table because they

do not appear in any of the coefficients and are kept at their nominal values. Further, results

on pass/fail detectability of few injected faults are tabulated in Table 4.4. In the cases where
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a5 = 0.039463
a4 = −0.50514
a3 = 2.1309
a2 = −2.5487
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Vc4 = 1.6572
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Vc2 = 12.7904
Vc1 = 33.0492
Vc0 = 93.1396

Figure 4.5: DC response of elliptic filter with curve fitting polynomial and V-transform plot.

Table 4.3: Parameter combinations leading to minimum values of V-transform coefficients
with α = 0.05 for the elliptic filter.

Circuit Vc0 Vc1 Vc2 Vc3 Vc4 Vc5
Parameter (Ω)

R1 = 19.6k 20.5k 18.6k 18.6k 20.5k 20.5k 20.5k
R2 = 196k 205k 186k 205k 205k 205k 186k
R3 = 147k 150k 139k 139k 146k 154k 139k
R4 = 1k 1010 950 950 950 950 950
R5 = 71.5 80 70 70 80 70 80
R6 = 37.4k 39.2k 39.2k 39.2k 39.2k 35.5k 39.2k
R7 = 154k 146k 146k 161k 146k 161k 161k
R11 = 110k 104k 104k 115k 104k 115k 115k
R12 = 110k 115k 104k 115k 115k 115k 115k

coefficient deviation lies in the region R1 for a coefficient Ck, the fault is attributed to PV

as opposed to parametric fault. The same procedure is repeated for VTC and the number

of cases in which the fault is diagnosed to be in the region R1 and incorrectly attributed to

PV is reduced. This is due to he enhanced sensitivity of V-transform coefficients to circuit

parameters. Table 4.5 shows the diagnosed results of a few injected faults using sensitivity

of V-transform coefficients to circuit parameters as described in Section 4.6.
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Table 4.4: Results for some injected faults in the elliptic filter.

Circuit Out of bound Fault Out of bound Fault
Parameter polynomial coefficient detected? V-transform coefficient detected?

R1 down 5% a3, a4 Yes Vc0 − Vc4 Yes

R2 down 10% a2 Yes Vc2 , Vc5 Yes

R3 up 5% a3 Yes Vc1 , Vc2 , Vc3 Yes

R4 down 10% a0 Yes Vc0 − Vc4 Yes

R5 up 10% a4 Yes Vc0 , Vc4 Yes

R7 up 5% None PV Vc1 , Vc2 Yes

R11 up 5% None PV Vc4 , Vc5 Yes

R12 down 5% None PV Vc4 , Vc5 Yes

Table 4.5: Parametric fault diagnosis with confidence levels of ≈ 88% for the elliptic filter.
Injected Diagnosed fault sites Deduced
fault DC 100Hz 900Hz 1000Hz 1100Hz fault

R1 R1 R1 R1, R2 R1, R2 R1 R1

dn 15% R4 C1 C1

R2 R2 R2 R2, R3 R2, R3 R2 R2

dn 10% C1 C1 C1

R3 R1 R3 R3, R4 R3 R3,C3 R3

up 5% R3 C3 C3 C3

R4 R1 R1 R2, R4 R1, R2 R1, R2 R4

dn 20% R4 R4 C1 R4 R4

R5 R5 R5 R4, R5 R4, R5 R5, R6 R5

up 15% C2 C2 C3

R7 R3 R7 R3, R7 R3, R6 R3, R7 R7

dn 10% R7 C3 R7 C3

4.8 Experimental Verification

Besides the simulation results presented in the previous section, we carried out an ex-

perimental validation of polynomial and V-transform coefficient based scheme for test and

diagnosis of parametric faults in the fifth-order elliptic filter that was analyzed in the previous

section. For all stimulus application and measurement, we used the National Instruments

Educational Laboratory Virtual Instrumentation Suite ELVIS-II+ [3] bench-top module. In

the sequel, we will briefly outline the details of the ELVIS II+ bench-top module and our

test setup. In Section 4.8.2, we present the measured results.
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Figure 4.6: Test setup with elliptic filter built on the prototyping board, which is in turn
mounted on the NI ELVISII+ bench-top module. Voltage and frequency control of the
applied signal is handled through the PC which is connected through USB port to the
bench-top module. Output from the circuit is sampled and transferred through the same
USB connection to the PC (where it can be post-processed). Also, circuit output can be
displayed on the PC using a virtual oscilloscope utility available in the ELVIS software (see
Figure 4.7).

4.8.1 Test Setup

The NI ELVIS-II+ system consists of two modules. A hardware module comprises of

a bench-top module that houses a detachable prototyping board, several power supplies, a

function generator, multiple channel digital to analog and analog to digital converters and

terminals for oscilloscope and digital multimeter (DMM), all in one portable unit. The

second module, a computer interface referred to as ELVIS instrument launcher, provides a

software interface to control various utilities available on the hardware module.

The experimental set-up for our test scheme is shown in Figure 4.6. The test circuit

under test (CUT), a fifth-order elliptic filter, was realized using discrete, off-the-shelf com-

ponents such as three µA-741 type op-amps, seven electrolytic capacitors, and fifteen carbon

coated resistors. These components were mounted on the prototyping board that is housed in
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Figure 4.7: Input/output, to/from the elliptic filter displayed on the PC based virtual oscil-
loscope at a frequency f = 100Hz.

the NI ELVIS bench-top module. Inputs can be applied directly from the bench-top module

through dedicated pins available on the prototyping board. Frequency and amplitude of the

applied inputs can be controlled through a software interface. Thus, a discrete component

breadboard implementation in conjunction with virtual instruments for signal generation

and response capture gave us the flexibility to inject a variety of parametric faults that

might occur in an actual integrated circuit. This allowed us to automate the post-processing

analysis of the captured response on the available PC of the system.

4.8.2 Measured Results

Typical input-output waveform pair for the elliptic filter as captured on the PC based

ELVIS virtual oscilloscope is shown in Figure 4.7. There are two display channels in the

oscilloscope. However, up to eight different inputs can be transferred to the PC, simulta-

neously, from the ELVIS hardware module. We injected the same set of parametric and
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Table 4.6: Measured results for some injected faults in elliptic filter.

Circuit Out of bound Fault Out of bound Fault
Parameter polynomial coefficient detection? V-transform coefficient detection?

R1 down 5% a3 Yes Vc1 − Vc4 Yes
R2 down 10% a2 Yes Vc2 , Vc5 Yes
R3 up 5% None No Vc1 , Vc2 , Vc3 Yes

R4 down 10% a0 Yes Vc0 − Vc3 Yes
R5 up 10% None No Vc0 , Vc4 Yes
R7 up 5% None No Vc1 , Vc2 Yes
R11 up 5% None No Vc4 , Vc5 Yes

R12 down 5% None No Vc4 , Vc5 Yes

catastrophic faults used for the simulated circuit in Section 4.7 (see Tables 4.4 and 4.5).

Using V-transform coefficients, all the faults that were identified in the simulation were also

detected by measurement. When polynomial coefficients were used without the V-transform,

the measurement setup of Figure 4.6 detected fewer faults as recorded in Table 4.6. This

reduced performance in fault classification when relying just on polynomial coefficients is due

to the measurement noise, whose primary contributor is the ADC-DAC quantization noise

from the ELVIS module. We see pronounced reduction in performance when there are fewer

than two coefficients that are pushed out of their respective nominal range by the injected

parametric fault. However, the increased sensitivity of V-transform coefficients is able to

overcompensate for any additional measurement noise and gives the same performance as

predicted by simulation.

While there is no loss of test quality with V-transform coefficients, we observe that

sometimes coefficients of certain order do not fall out of the nominal range when a fault is

introduced. For example, the first fault in Table 4.6, R1 down 5%, had Vc0 − Vc4 going out

of the nominal range in simulation, but on measurement we see only coefficients Vc1 − Vc4

falling out of nominal range.
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4.9 Sumamrizing V-Transform

In this chapter, a new approach for test and diagnosis of non-linear circuits based

on a transformation of polynomial expansion of the circuit was demonstrated. The V-

transform renders the polynomial coefficients monotonicity and enhances their sensitivity.

The minimum sizes of detectable faults in some of the circuit parameters are as low as 5%

which implies that impressive fault coverage can be achieved with V-transform coefficients.

The use of V-transform coefficients shows a reduction in masking of parametric faults due

to process variation. The method is then extended to sensitivity based fault diagnosis by

evaluating V-transform coefficients at different frequencies. The next chapter will examine

probability moments of the circuit output as a circuit-test signature, with circuit input as

noise (or random variable).
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Chapter 5

Probability Moments as Test Signatures

5.1 Introduction

Defects in analog integrated circuits can be classified into two important categories,

namely, catastrophic faults (open or shorted components) and parametric faults (fractional

deviations of circuit components from their nominal values). While extensive literature [8,

15, 28, 41, 48, 76, 85, 143] exists on test schemes for detecting catastrophic (open/short)

faults, testing of parametric faults has not received similar attention [33, 45, 54, 157]. The

main reason for this disparity is that catastrophic faults tend to upset the supply current

drawn by the circuit or the output voltage by a reasonably large factor and any test scheme

based on their observation can conveniently uncover them. Some parametric faults have

little impact on supply current and are easily masked by measurement noise or general

insensitivity of the output to circuit parameter unless they are tested by careful designed

input signal targeting their excitation [111]. Different methods have been proposed to test

parametric faults in analog circuits including the use of neural networks [13, 34, 39, 130, 142],

spectral analysis [12, 158], transfer function coefficient based testing [53] or, more recently,

polynomial coefficient based testing [124, 125]. IDDQ measurement needs a sizable deviation

in a circuit component value from its nominal value to be useful [99]. Some test methods

require extra die area for testing or call for specific input signal excitation and increased

test time [77] (as is the case in neural networks based test methods). While some of these

problems are addressed in polynomial based test [124, 125], it is still in its early stages and

the correct choices of order and frequency of test points are critical for good fault coverage

Thus, we have a need for a production test, that has little additional hardware, reduced

test application time and minimized complexity of input signal design. To respond to the
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last question we ask, ‘What is the easiest available signal that needs little or no design

effort?’ Without doubt, it is white noise, always available as random voltage fluctuations

across an R Ω resistor due to thermally agitated electrons. Power spectral density of this

white noise is given by SN (f) = 4kTR volt2/Hz, where k is the Boltzmann constant and T

is temperature in Kelvin. Previously [65] white noise has been used as an excitation signal

for testing circuits, and the output Fourier spectrum is used for ensuring the circuit conforms

to specification. However, in this work, to leverage a random signal like white noise which is

characterized only by its statistics such as mean, variance, third and higher order moments,

we compute probability moments at the output to be able to derive information on deviation

in circuit parameters. Reference [96] proposes the use of a pseudo random noise source as

the input and higher order statistics with Volterra kernel at the output as a signature for

characterizing the CUT as good or faulty. The work presented in this chapter differs on

three counts from previous work, 1) we use a truly random noise source as input, namely,

thermal noise from a resistor; though pseudo random noise source will work equally well,

2) higher order moments with an exponentially sensitive random variable transformation

is used at the output instead of Volterra kernel. Such a transformation gives better fault

resolution for parametric faults than Volterra kernel as shown by our simulation of the

elliptic filter example, those results are not included here, 3) we demonstrate fault diagnosis

in addition to testing while the earlier work discussed only testing. We view the circuit as a

communication channel [9, 115, 116] that transforms the probability density function of the

input signal as it propagates through the channel (circuit). The output, which is now the

transformed random variable (RV) has its signature moments that are used for testing the

CUT for both catastrophic and parametric faults. We show that probability moments can

be made exponentially sensitive [119, 127] to circuit parameters, so that parametric faults

of 10% and over result in sufficient excursions of the output probability moments to uncover

these faults. In the sequel, we describe our scheme on a cascaded amplifier and a low pass

filter. We then evaluate the performance of probability moments in conjunction with an
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exponential RV transformation to enhance sensitivity for fault detection on a benchmark

elliptic filter.

Section 5.2 develops the background on moment theory and random variable transforma-

tion, and defines a minimum size detectable fault. The problem at hand and our approach is

described with examples in Section 5.3. In Section 5.4, we generalize the method to arbitrar-

ily large circuits. We report experimental results on benchmark elliptic filter in Section 5.5.

Section 5.6 introduces fault diagnosis procedure that leverages on unique relationships be-

tween moments and circuit components, and Section 5.7 reports results of a fault diagnosis

experiment using moments of output of a low noise amplifier. We conclude in Section 5.8.

5.2 Background

We briefly review the moment method to characterize a random variable (RV) (see [120]

for more details). We then give a transformation of RV to increase the sensitivity of moments

to circuit parameters.

5.2.1 Moment Generating Functions

The jth moment ∀j = 2 · · ·N of a continuous time RV X (t), sampled at time instants

t = kT , and denoted by Xk where k = 0, 1 · · ·∞ is given by

µj =
∞∑
k=0

(Xk − µ1)
jp (Xk) (5.1)

Moment generating functionM (s) of such a discrete RVXk, serves as a convenient expression

from which different orders of moments µj may be computed using the following relation:

µj =
djM (s)

dsj

∣∣∣∣
s=0

(5.2)

where M (s) is given by

M (s) = E
(
esXk

)
=

∞∑
k=0

esXkp (Xk) (5.3)
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5.2.2 Random Variable Transformation

We require a random variable transformation [94] that can narrowly track small changes.

We look for a transformation with following properties:

1. It increases the sensitivity of output function for small changes in the input.

2. It increases absolute values of the first and higher order moments of the output.

Let X be a RV whose domain is R. We define a transformation f (X) mapping X from

R =⇒ R as follows:

f (X) = XeαX− β
X (5.4)

where α, β≥ 0 are parameters of the transformation. It can be shown that transformation

f (X) always gives second and higher order moments which are such that

loge |µj|f(X) ≥ loge |µj| ∀j = 2, 3, · · ·N (5.5)

We plot the first six moments of the transformed RV, with α = 0.01, β = 0.001 against

standard deviation of input RV in 5.1, which shows that the moments of the transformed

RV is always greater than that of the RV without transformation. At a few input standard

deviations, transformed RV can have significantly higher moments compared to moments

without transformation (Notice that the Y-axis in the plots are in the logarithmic scale).

This makes the transformation defined in equation 5.4 very amenable for use as a post

processing RV transformation at the output of the CUT. Even for small changes in the input,

the resulting moments can be significantly different. The sensitivity of the transformed RV

to the input RV is given by

Sf
X =

X

f

∂f

∂X
= 1 + αX +

β

X
(5.6)

By appropriate choice of α and β, based on dynamic range of X, we can increase the sensi-

tivity of f (X) for both small and large variations of X.
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Figure 5.1: Moments of different orders as functions of input noise power (standard deviation
of input RV) with (in red/dashed) and without (in blue/solid) RV transformation for first
order RC filter. See Figure 5.2.
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Figure 5.2: First-order RC filter.

5.2.3 Minimum Size Detectable Fault

Definition: Minimum size detectable fault (MSDF) of a circuit parameter is defined as

the minimum fractional deviation in the circuit parameter from its nominal value for it to

be detectable with all other circuit parameters held at their nominal values. The fractional

deviation ρ can be positive or negative and is named upside-MSDF (UMSDF) or downside-

MSDF (DMSDF) accordingly. This definition of minimum size detectable fault is general,

regardless of the test technique used to uncover faults. In the context of the test technique

described here, we define MSDF based on moments of the probability density function of the

circuit output. Suppose pi, where i = 1 · · ·K is the nominal value of ith circuit parameter

with a fault free tolerance range of pi (1± γ), and µj, where j = 1 · · ·N is the jth fault-free

probability moment of the circuit output. Then the UMSDF (DMSDF), ρ̂i (ρ̌i) of circuit

parameter pi is given by a minimum value x, such that pi (1± x) puts at least one of the

moments µj outside the fault free hypersphere |µj − µj| ≤ µ0, where µ0 is the permitted

deviation in moments when the circuit parameters are allowed excursions within their toler-

ance range. As specified earlier, this range is characterized by a tolerance factor γ.

5.3 Problem and Approach

We first illustrate with an example the calculation of limits of the probability moments

of a first order low pass filter. We follow this up with calculation of MSDF values of the

circuit parameters. We then consider a two stage cascade amplifier.
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Figure 5.3: A cascade amplifier.

Example 1. First order RC filter: With white noise as the input, the discrete values are

sampled Gaussian RV of zero mean and variance, σ2
in = No

2
. The fault-free filtered response

has a variance (also the second order moment) µ2 =
Noπ
4RC

. Details of this calculation are shown

in the appendix. However, if there is a parametric fault of size x in the circuit parameter

R, then the new output variance is given by µ2 =
Noπ

4R(1+x)C
. If the circuit specifications can

tolerate a moment deviation of µ0, then the MSDF of R is given by the minimum value of x

that violates µ2 − µ2 ≤ µ0. For the example in question, since we consider only the second

order moment, the MSDF in R, denoted by ρR is given by

ρR =
4µ0CR

Noπ − 4µ0CR
(5.7)

Similarly MSDF of capacitor C, ρC can be found and by symmetry it is equal to ρR.

Example 2. Two stage amplifier: Consider the cascade amplifier shown in Figure 5.3.

The output voltage Vout in terms of input voltage results in a fourth degree polynomial:

vout = a0 + a1vin + a2v
2
in + a3v

3
in + a4v

4
in (5.8)

where constants a0, a1, a2, a3 are defined symbolically in (5.9) for transistors M1 and M2

operating in the saturation region.
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a4 (R1, R2) = −K3
(

W
L
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L

)2

2
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(5.9)

If the cascade amplifier is excited with white noise at its input, the fault free output can be

a estimated as a random variable with its first order moment, namely, mean µ1 given by

µ1 = E
{
a0 + a1vin + a2v

2
in + a3v

3
in + a4v

4
in

}
(5.10)

= a0 + a1µ1,in + a2µ2,in + a3µ3,in + a4µ4,in (5.11)

To find MSDF in R1, let us assume we have a fractional deviation x in R1 and the other

circuit parameters are at their fault free values. If µ0 is the tolerable fractional deviation in

the first order moment at the output, the minimum value of x that satisfies the following

inequality is the MSDF of parameter R1:



a0 (R1 (1 + x) , R2)

+a1 (R1 (1 + x) , R2)µ1,in

+a2 (R1 (1 + x) , R2)µ2,in

+a3 (R1 (1 + x) , R2)µ3,in

+a4 (R1 (1 + x) , R2)µ4,in


− µ1 ≥ µ0 (5.12)

Maximizing x, while meeting the constraint in equation 5.12 gives MSDF of R1 as

ρR1 =
µ0

a0 + a1µ1,in + a2µ2,in + a3µ3,in + a4µ4,in

(5.13)
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Table 5.1: MSDF for cascade amplifier of Figure 5.3 with µ0 = 0.05.

Circuit %upside %downside
parameter MSDF MSDF

Resistor R1 7 8
Resistor R2 10.5 7.5

Similarly MSDF of R2 can be evaluated. Table 5.1 gives the MSDF for R1 and R2 based on

the above calculation. Nominal values of VDD = 1.2V , VT = 400mV ,
(
W
L

)
1
= 1

2

(
W
L

)
2
= 20,

and K = 100µA/V 2 are used for this example.

5.4 Generalization

The computation of MSDF in the previous section is too complex for large circuits. As

shown in Figure 5.4 a complex circuit having more than 20 components is supplied the input

noise voltage (derived from a resistor maintained at desired temperature). The output of the

circuit is then passed through a suitable RV transformation function like the one given by

equation 5.4. Probability density function (PDF) of the output of this RV transformation is

estimated using the histogram spread of the output voltage values. Next, N th order moments

(orders up to N = 6 are sufficient for most analog circuits having component count of ≤ 40)

are found using the moment generating function defined in equation 5.3. The jth derivatives

w.r.t. s required for jth order moments are found as finite differences about s = 0. Once the

fault free values of all N moments are available, single parametric faults are injected into the

circuit and the corresponding deviation in one or more moments are noted. Based on the

moment deviations that can be tolerated, the fault size injected is steadily increased. The

minimum fault size of any circuit parameter that causes at least one of the moments to just

fall outside of its tolerance band (also called the fault-free hypersphere) gives the MSDF of

that circuit parameter. In Figure 5.5, Flowchart I summarizes the process of numerically

finding the probability moments and their bounds and Flowchart II in Figure 5.5 outlines

a procedure to test CUT using the PDF moments. The bounds on moments of fault free

circuit are found a priori in Flowchart I.
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Figure 5.4: Block diagram of a system with CUT using white noise excitation.

5.5 Fault Detection in Elliptic Filter

We simulated an elliptic filter shown in Figure 5.6 according to the test scheme of

Figure 5.5. The circuit parameter values are as in the benchmark maintained by Stroud et

al. [70]. Thermal noise from resistors R = 40GΩ, 60GΩ, 80GΩ, 100GΩ was used at T =

300K. On application of RV transformation, signal levels (and so are moments) significantly

better resolved as compared to that without RV transformation. For example, the six fault

free moments of the elliptic filter before transformation (for R = 40GΩ) are as follows:

µ1 = 4.53453, µ2 = 0.03234, µ3 = 0.02345, µ4 = 0.01125, µ5 = 0.009325, µ6 = 0.00623125.

After RV transformation, the fault free moments are given by µ1 = 338.6453, µ2 = 1.8234,

µ3 = 0.9254, µ4 = 0.8812, µ5 = 0.6365, µ6 = 0.1638125.

Combinations of parameter values leading to limits on the coefficients are as shown in

Tables 5.2 and 5.3. Results on pass/fail detectability of few injected faults are tabulated in

Table 5.4.
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Figure 5.5: Fault simulation process and bounding of moments (Flowchart I), and the com-
plete test procedure (Flowchart II).
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Figure 5.6: Elliptic filter.

5.6 Fault Diagnosis

Flowchart I in Figure 5.7 describes fault simulation and creation of a fault dictionary.

Every probability moment of the output is a function of one or more circuit elements. Con-

versely, we can find one or more moments that are functions of a particular circuit element.

By simulating all catastrophic faults in the circuit, we can find those moments that are dis-

placed out of their fault-free ranges for each of the fault and create a fault dictionary. The

fault dictionary consists of a list of all catastrophic faults and the corresponding moments

that are displaced. Next, using the single catastrophic fault assumption we can compute all

the moments of the CUT. Depending on moments that lie outside their fault-free range an

estimation of the circuit parameter that has a catastrophic fault is found. Now based on the

moments that are displaced from their fault-free value, we can locate the fault in the CUT.

Flowchart II in Figure 5.7 gives the diagnosis procedure.
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Figure 5.7: Fault simulation (Flowchart I) and Fault diagnosis (Flowchart II) procedures
summarized.
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Table 5.2: Parameter combinations leading to maximum values of moments with device
tolerance γ = 0.05 in elliptic filter.

Circuit µ1 µ2 µ3 µ4 µ5 µ6

Parameter (Ω, nF)

R1 = 19.6k 19.6k 20.58k 19.6k 20.58k 20.58k 18.62k

R2 = 196k 186.2k 205.8k 205.8k 205.8k 186.2k 186.2k

R3 = 147k 139.65k 147k 139.65k 139.65k 154.35k 147k

R4 = 1k 1050 1050 950 1000 1050 950

R5 = 71.5 75.075 67.925 75.075 71.5 75.075 67.925

R6 = 37.4k 37.4k 37.4k 37.4k 39.27k 39.27k 37.4k

R7 = 154k 154k 154k 154k 146.3k 154k 154k

R8 = 260 260 260 260 260 273 273

R9 = 740 703 777 777 703 777 777

R10 = 500 500 500 475 475 525 500

R11 = 110k 115.5k 104.5k 104.5k 104.5k 104.5k 110k

R12 = 110k 115.5k 104.5k 104.5k 110k 110k 115.5k

R13 = 27.4k 28.77k 26.03k 26.03k 26.03k 27.4k 26.03k

R14 = 40 40 40 38 40 40 40

R15 = 960 912 1008 912 960 912 960

C1 = 2.67 2.8035 2.5365 2.67 2.67 2.67 2.5365

C2 = 2.67 2.8035 2.67 2.8035 2.8035 2.5365 2.67

C3 = 2.67 2.8035 2.8035 2.67 2.5365 2.5365 2.5365

C4 = 2.67 2.8035 2.67 2.5365 2.67 2.5365 2.67

C5 = 2.67 2.8035 2.67 2.8035 2.5365 2.5365 2.67

C6 = 2.67 2.8035 2.5365 2.8035 2.5365 2.67 2.8035

C7 = 2.67 2.67 2.5365 2.8035 2.8035 2.67 2.5365

5.7 Fault Diagnosis in Low Noise Amplifier

We used the low noise amplifier of Figure 5.8 to evaluate our test procedure. The circuit

has 16 components. Thus, there are 32 single catastrophic faults corresponding to opens and

shorts of the passive R, L and C elements. For an open fault, the element was replaced

by a 1GΩ resistance. For a short fault, the element was replaced by a 0V voltage source.

For the MOS transistor, the drain and source terminals were short circuited for a short and

were left open for an open fault. For these 32 faults to be uniquely identified, we need at

least 5 moments. Each fault causes one or more moments to lie outside its tolerance band.

The total number of uniquely identifiable fault cases with N moments = ΣN
n=1

(
N
n

)
= 2N − 1.

Two faults displacing the same set of moments will cause a diagnostic ambiguity. Evaluating
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higher order moments, however, gives better diagnostic resolution, which comes at a price of

additional computation. Table 5.5 lists faults and the corresponding moments displaced by

each fault. We use up to the 6th order moment and observe that out of the 32 faults, only 5

are not uniquely diagnosed because they affect identical sets of moments. The number in the

last column identifies number of faults displacing the same set of moments. For example, two

faults (indicated in the last column) Rbias-short and Lc-short displace same set of moments

µ2–µ6.

5.8 Conclusion

This chapter discussed a new approach for test and diagnosis of non-linear circuits based

on probability density moments of the output was presented. We also showed the effective use

of RV transformation to sensitize the output moments to circuit parameters. The minimum

sizes of detectable faults in some of the circuit parameters are as low as 10% for an elliptic

filter, which implies impressive fault coverage can be achieved with moments as a test metric.

Further, the prudent choice of RV transformations can enhance the fault detection resolution.

We also proposed a method for localizing catastrophic faults and showed that good diagnostic

coverages can be obtained by choosing expansions of moments of the order O(ln(N)) for N

faults.

The next chapter examines the upper bound on defect level and lower bound on fault

coverage achievable in signature based test techniques proposed in this chapter and the

previous two chapters – namely polynomial coefficients and V-transform coefficients. The

approach taken is general enough that bounds derived can be easily extended to any other

coefficient-based signature-test schemes.
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Figure 5.8: Schematic of low noise amplifier.
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Table 5.3: Parameter combinations leading to minimum values of moments with device
tolerance γ = 0.05 in elliptic filter.

Circuit µ1 µ2 µ3 µ4 µ5 µ6

Parameter (Ω,nF)

R1 = 19.6k 19.6k 18.62k 19.6k 19.6k 19.6k 20.58k

R2 = 196k 205.8k 205.8k 205.8k 196k 186.2k 205.8k

R3 = 147k 147k 154.35k 154.35k 139.65k 154.35k 154.35k

R4 = 1k 950 1000 1050 950 1050 950

R5 = 71.5 67.925 71.5 75.075 75.075 67.925 71.5

R6 = 37.4k 39.27k 37.4k 35.53k 39.27k 35.53k 35.53k

R7 = 154k 146.3k 161.7k 154k 161.7k 154k 154k

R8 = 260 247 273 247 273 260 247

R9 = 740 703 777 740 777 777 740

R10 = 500 500 500 475 475 525 475

R11 = 110k 104.5k 115.5k 115.5k 115.5k 110k 110k

R12 = 110k 115.5k 110k 115.5k 110k 104.5k 115.5k

R13 = 27.4k 27.4k 26.03k 27.4k 28.77k 28.77k 26.03k

R14 = 40 42 40 40 38 40 38

R15 = 960 1008 960 1008 1008 912 960

C1 = 2.67 2.67 2.5365 2.5365 2.67 2.5365 2.67

C2 = 2.67 2.67 2.67 2.67 2.67 2.67 2.8035

C3 = 2.67 2.8035 2.8035 2.8035 2.8035 2.5365 2.8035

C4 = 2.67 2.8035 2.8035 2.8035 2.8035 2.8035 2.67

C5 = 2.67 2.67 2.8035 2.67 2.8035 2.8035 2.67

C6 = 2.67 2.8035 2.5365 2.8035 2.5365 2.67 2.8035

C7 = 2.67 2.67 2.5365 2.8035 2.67 2.67 2.8035

Table 5.4: Fault detection of some injected faults in elliptic filter.

Circuit Parameter Out of bound moment Fault detected?

R1 down 12% µ3, µ1 Yes

R2 down 10% µ4 Yes

R3 up 12% µ1, µ2 Yes

R4 down 10% µ2 Yes

R5 up 10% µ4 Yes

R7 up 15% µ5, µ6 Yes

R11 up 15% µ3 Yes

R12 down 15% µ2, µ6 Yes

C1 up 11% µ1, µ2 Yes

C4 up 12% µ4 Yes

C5 down 15% µ1, µ6 Yes

83



Table 5.5: Fault dictionary for catastrophic faults in low noise amplifier.

Component Nature µ1 µ2 µ3 µ4 µ5 µ6 Uniquely
(ohm, nH, fF) of fault Diagnosable?

Rbias = 10 short X X X X X No (2)

LC = 1 short X X X X X No (2)

L1 = 1.5 short X X X X X X Yes

L2 = 1.5 short X X X X Yes

Lf = 1 short X X X X X X No (3)

Cf = 100 short X X X Yes

CC2 = 100 short X X X X X Yes

Rbias1 = 100k short X X X Yes

Rbias2 = 100k short X X Yes

RL = 100k short X X X No (3)

N0(D− S) short X X Yes

N1(D− S) short X X Yes

N2(D− S) short X X X X X Yes

N3(D− S) short X X X X X Yes

N4(D− S) short X X Yes

Rbias = 10 open X X X Yes

LC = 1 open X X Yes

L1 = 1.5 open X X X Yes

L2 = 1.5 open X X X X Yes

Lf = 1 open X X X Yes

Cf = 100 open X X X Yes

CC2 = 100 open X Yes

Rbias1 = 100k open X X X Yes

Rbias2 = 100k open X X X X Yes

RL = 100k open X X X X X X No (3)

N0(D− S) open X X X Yes

N1(D− S) open X X X X Yes

N2(D− S) open X Yes

N3(D− S) open X X X Yes

N4(D− S) open X X Yes
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Chapter 6

Bounds on Fault Coverage and Defect Level in Signature Based Testing

6.1 Introduction

Faults in analog circuits can be fundamentally divided into two categories, namely,

catastrophic and parametric [33]. Catastrophic faults are those in which a circuit component

displays extreme deviant behavior from its nominal value. For example, in a resistor such

a fault could either be an electrical open or short. Such faults are easy to uncover because

they manifest themselves as a sizable deviation in circuit output or performance. On the

other hand, component faults are fractional deviations in circuit components from their

nominal values. They manifest themselves as subtle deviations in output or performance of

the circuit. It is therefore a non-trivial problem to uncover component faults.

Component-based testing of analog circuits has been widely discussed in the litera-

ture [16, 37, 53, 92, 93, 100, 111]. Typical methods of characterizing input-output relation-

ship is based on coefficients of transfer function [53], polynomial expansion [124], wavelet

transform [23], V-transform [119] or Volterra series [96].

A popular and elegant method was proposed by Savir and Guo [53], in which, analog

circuit under test is treated as a linear time invariant (LTI) system. The transfer function

(TF) of this LTI system is computed based on the circuit netlist. Note that the coefficients in

the numerator and denominator of TF, referred to as transfer function coefficients (TFC), are

functions of circuit components. Therefore, any drift in circuit components from their fault

free (nominal) values will also result in drifts of the coefficients, as they are linear functions

of circuit components. As a result min-max bounds for the coefficients of a healthy circuit

are found and these are used to classify the circuit under test (CUT) as good or faulty.

Reference [111] shows some limitations of component based analog testing by treating CUT
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this way. However, there has been no effort to quantify the achievable fault coverage (FC)

and defect level (DL) in TFC based testing of analog circuits. In this work we have derived

closed form expressions for upper bound on DL and lower bound on FC.

An approach proposed by Savir and Guo [53] finds component faults by measuring the

TFC estimates of the CUT. Minimum size detectable fault (MSDF) in their method is de-

fined as the minimum fault size or minimum fractional drift of the circuit component that will

cause the circuit characteristic (in this case the TFC) to lie beyond its permissible limits [53].

In general, computation of MSDF for a circuit component is a non-linear optimization prob-

lem and it is computationally expensive to evaluate MSDF for all the circuit components.

However, we have some respite in TFCs of linear analog circuit being a linear functions of

the circuit components. This implies that TFCs of the circuit take min-max values when

at least one of the circuit component is at the edge of its tolerance band (fault free drift

range) [53]. This fact is used to avoid solving the non-linear optimization problem. Instead,

the circuit is simulated for all combinations of extreme values taken by circuit components

in its fault free drift range. The minimum deviation in circuit components causing the coef-

ficients to move out of their min-max bands is thus obtained and is called nearly minimum

size detectable fault (NMSDF). The price paid for this simplification is the non-zero differ-

ence between NMSDF and MSDF. We quantify this difference and thereby derive bounds

for the defect level and Fault coverage achievable through TFC based test methods. Main

results of this work have appeared recently [123]. In addition, we present a trade-off between

computational overheads of simulation vis-a-vis the effort required to solve the non-linear

optimization problem based on the defect level desired.

Most of the ideas in this chapter have been published in a paper [121]. This chapter is

organized as follows. In Section 6.2 we formulate the problem. Section 6.3 describes our ap-

proach and present analytical proofs for the bounds on DL and FC. Section 6.4 comprises the
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simulation results for some well-known circuits. Section 6.5 is a discussion on “simulation–

optimization” trade-off based on bounds of defect level and fault coverage. Section 6.6

concludes the chapter.

6.2 Problem Formulation

A linear analog circuit [38, 61, 68] can be represented as a LTI system whose transfer

function is given by,

H(s) = K

sλ +
λ−1∑
k=0

aks
k

sµ +
µ−1∑
k=0

bksk
(λ < µ) (6.1)

Consider a linear analog circuit made up of N circuit components. In the literature, com-

ponents are often referred to as circuit parameters. However, we will consistently refer

to the circuit elements as components. We assume that components have nominal values,

pni, ∀i = 1 . . . N . In (1), coefficients K, {ak} and {bk} are functions of the circuit com-

ponents. Let the specified fractional tolerance range for each component be ±α centered

around its nominal value. Thus, the range of values for component pi is,

pni(1− α) ≤ pi ≤ pni(1 + α) ∀i = 1 · · ·N (6.2)

The set of all fault free or undetectable fault values taken by any coefficient ai in (1)

is contained in [ai,min, ai,max]. Let Ck be one of the coefficients of the LTI system transfer

function in (1). Clearly, Ck is a function of at least one or more circuit components pi ∀i =

1 . . . N . Each coefficient Ck ∀k = 0, . . . , (λ+µ+1) is enclosed in an N -dimensional hypercube

spanned by the circuit components. The volume of this hypercube depends on the fault

free tolerance range of the circuit components that determine Ck. The extremities of any

coefficient Ck of the transfer function occur when at least one component is outside its

tolerance range. The circuit is simulated only at the edges of the hypercube. The maximum

and minimum values of a coefficient Ck are thus obtained form its bounds.
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Figure 6.1: Hypercube around coefficient Ck and associated regions.

We formally define the following terms as they are used here.

Definition 1 : Minimum size detectable fault (MSDF) of a component pi is the smallest

fractional change ρi in its value that makes the circuit faulty when all the other components

retain their nominal values.

Definition 2 : Nearly minimum size detectable fault (NMSDF) of a component pi is any

small fractional change ρ∗i in its value that makes the circuit faulty when all other compo-

nents retain their nominal values. Note that ρ∗i ≥ ρi, ∀i = 1 . . . N .

Definition 3 : Coefficient of uncertainty (ϵi) is the assumed difference between the

NMSDF and MSDF for the ith circuit component. That is,

ϵi= ρ∗i−ρi (6.3)
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Definition 4 : Defect level (DL) of a test procedure is the probability of a faulty circuit

passing the test as a fault free circuit.

Definition 5 : Fault coverage (FC) of a test procedure is the fraction of all detectable

faults that can be detected in CUT by the test procedure.

Consider a TFC Ck being a function of components p1 and p2. The hypercube enclosing

Ck is shown in Figure 6.1. MSDF values of p1 and p2 are found by solving a non-linear

optimization problem [53]. The objective for the solution is to maximize (or minimize) Ck

with constraint on p1 and p2, allowing a drift of ±α about its nominal value. An example

of MSDF calculation has been illustrated by Savir and Guo [53]. NMSDF for p1 and p2

are obtained by simulating the circuit at the vertices of the hypercube and measuring the

fractional changes in the value of Ck. In general, the MSDF (ρ) and NMSDF (ρ∗) values of

a component for drifts above and below its nominal values are not the same. However, for

the sake of developing a conservative bound and ease of calculation we consider ρ = Min

(ρ↑, ρ↓) and ρ
∗= Max (ρ∗↑, ρ

∗
↓). Where ρ↑ and ρ↓ denote positive and negative MSDF and ρ∗↑

and ρ∗↓ denote positive and negative NMSDF.

Shaded region Λ in Figure 6.1 is the region of uncertainty and any component drift

leading to coefficient lying in this region goes undetected. This region contributes to the

defect level DLCk
when the test is based on observing the coefficient Ck.

6.3 Our Approach

6.3.1 Bounding Defect level

The values taken by circuit components can be modeled as independent and identically

distributed random variables whose means are the nominal fault-free values and standard

deviations (σ) are the tolerance values of circuit components [70].

Two component case

We assume a normal distribution of the components p1 and p2 with mean values same

as their nominal values (p1n and p2n) and variance σ2. The defect level from measurement
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of coefficient Ck alone is obtained by integrating the joint probability density function of

components p1 and p2 over the shaded area Λk shown in Figure 6.1 and is given by,

DLCk
=

∫
Λk

fp1,p2(x, y) dx dy (6.4)

where fp1,p2(x, y) is the joint probability density function (p.d.f.) of p1 and p2 as given by,

fp1,p2(x, y) =
1

2πσ2
exp

(
−(x− p1n)

2

2σ2
+

−(y − p2n)
2

2σ2

)
(6.5)

We define Q(x) as the integral over the interval [x, ∞) of a zero mean and unity variance

normal distribution [94]. Similarly, two more integrals, S1 and S2, are defined as follows:

Q(x) =
1√
2π

∞∫
x

exp

(
−u2

2

)
du (6.6)

S1 =

p1n(1+α)∫
p1n(1−α)

p2n(1+α)∫
p2n(1−α)

fp1,p2(x, y) dx dy (6.7)

S2 =

p1n(1+α)∫
p1n(1−α)

p2n(1+α−ϵ)∫
p2n(1−α+ϵ)

fp1,p2 (x, y) dx dy (6.8)

S1 and S2 are evaluated by integrating over the areas shown in Figure 6.1. The Defect Level

obtained on observing only a single coefficient Ck is given by,

S1 =

{
Q

(
−α
σ

)
−Q

(α
σ

)}2

S2 =

{
Q

(
−α
σ

)
−Q

(α
σ

)}{
Q

(
−α+ ε

σ

)
−Q

(
α− ε

σ

)}

DLCk
= S1 − S2 (6.9)
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Generalizing the bound

The result in (9) can be extended to a case where the coefficient Ck depends on all N

circuit components. To get an upper bound in this case we take only one component to be

at its fault free edge while other components can be anywhere in the fault free band of their

values [53]. The maximum defect level from observing Ck alone is given by,

DLCk
=

∫
Λk

· · ·
∫
fp1,p2,··· ,pN (x1, x2, · · · , xN) dx1 · · · dxN (6.10)

Theorem 6.1 For TFCs that are functions of the same circuit components, a component

fault (ρn) for any n = 1 . . . N , such that ρn ≥ ρ can escape being detected if and only if it

induces all the TFCs into their regions of uncertainty.

By definition, an undetectable fault corresponds to combinations of TFCs, which are all

within their fault free range. A fault is detectable if at least one of the TFCs is beyond its

min-max bound, which is obtained on substituting the NMSDF values of circuit components

it depends on. This implies a fault can be undetectable only if it induces none of the TFCs

beyond its min-max value. That is to say all coefficients are in their regions of uncertainty.

Corollary 1 : If κi were the event that the ith coefficient is in its region of uncertainty,

then the event κ of all coefficients being in their regions of uncertainty is given by

κ =

λ+µ+1∩
i=0

κi (6.11)

℘ (κ) = ℘

(
λ+µ+1∩
i=1

κi

)
(6.12)

⇒ ℘ (κ) ≤ ℘ (κi)
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where ℘ (κ) denotes probability of event κ. Equation (12) follows from the fact that κi ⊇ κ.

From (12) and the definition of defect level (DL) as stated in Definition 4, we get

DLCk
≥ DL (6.13)

From (10), upper bounds on DLCk
and DL are obtained for N circuit components, assuming

that each component has an identical coefficient of uncertainty ϵ. We get the following result:

DL ≤ DLCk
≤
{
Q
(−α

σ

)
−Q

(
α
σ

)}N
−
{
Q
(−α

σ

)
−Q

(
α
σ

)} {
Q
(−α+ϵ

σ

)
−Q

(
α−ϵ
σ

)}N−1
(6.14)

An analog circuit is typically designed anticipating ±σ variation in its component values [70],

where σ is the standard deviation or tolerance of a component about its nominal value and

is usually known a priori as a specification of the device. We can therefore assume fault free

drifts of ±α about the nominal value of the circuit component to be equal to ±σ variation

in the value of component. Substituting ±α = ±σ in (14), we get a conservative bound on

defect level as,

DL ≤ 0.8427N − 0.8427

{
Q
(
−1 +

ϵ

σ

)
−Q

(
1 +

−ϵ
σ

)}N−1

(6.15)

6.3.2 Bounding Fault Coverage

Just as we dealt with the problem of bounding the defect level, we shall first consider

the two component case and then generalize the result for N components.

Two component case

We assume a normal distribution for each of the components p1 and p2 with mean as

the nominal value, p1n or p2n, and variance σ2. We also regard their probability distributions

being independent of each other. The Fault coverage achievable by observing coefficient Ck

alone is obtained by integrating the joint probability density function of p1 and p2 over the
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shaded area Γk in Figure 6.1. Thus,

FCCk
=

∫
Γk

fp1,p2(x, y) dx dy (6.16)

where region Γk is the complement of union of region of uncertainty Λk and fault free space

Ξk of coefficient Ck in quadrant-I in which p1, p2 ∈ (0,∞). This is the entire region in the

quadrant-I denoted as Ω. We can write,

Γk= Ω\ (Λk ∪ Ξk) (6.17)

SΩ =

{
Q

(
−p1n
σ

)
Q

(
−p2n
σ

)}
(6.18)

SΩ in (18) gives probability of the region under Ω. From (17) and (18), we have FCCk

given by (19).

FCCk
=
{
Q
(−p1n

σ

)
Q
(−p2n

σ

)}
−
{
Q
(−α

σ

)
−Q

(
α
σ

)}2 (6.19)

In general, nominal value of a component is much greater than its tolerance [70]. We

can therefore fairly assume pin = 5σ ∀ i = 1 . . . N and ±α = ±3σ in (19) to find FCCk
for

two components.

Generalizing the bound

Equation (16) can be extended to N components as in (20).

FCCk
=

∫
Γk

· · ·
∫
fp1,p2,··· ,pN (x1, x2, · · · , xN) dx1 · · · dxN (6.20)

Theorem 6.2 For TFCs that are functions of the same circuit components, a component

fault (ρn) for any n=1 . . .N such that ρn ≥ ρ∗ can be detected if and only if it induces at

least one of the TFCs beyond their regions of uncertainty.
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By converse of the statement of Theorem 6.1 we have Theorem 6.2.

Corollary 2: If ηi were the event that the ith coefficient is in its region of detectability

(Γi), then the event η of at least one of the coefficients being in their region of detectability

is given by

η =

λ+µ+1∪
i=0

ηi (6.21)

Equation (22) follows from (21) as we have ηi ⊆ η.

℘ (η) ≥ ℘ (ηi) (6.22)

By definition 5 we have FCCk
= ℘ (ηi) and FC = ℘ (η) therefore on evaluating the

integral in (20) we get

FC ≥ FCCk
=

{
N∏
i=1

Q

(
−pin
σ

)}
−
{
Q

(
−α
σ

)
−Q

(α
σ

)}N

(6.23)

The result in (23) is a lower bound on fault coverage. On substituting typical values

for nominal component, (pin = 5σ and ±α = ±σ), we get the following result, which is

independent of ϵ:

FC ≥ FCCk
= 1− 0.8427N (6.24)

6.4 Simulation and Computation

We present plots of defect level in (6.15) against the number of circuit components (N)

in Figure 6.2 and against the ratio of coefficient of uncertainty (ϵ) to standard deviation (σ)

in Figure 6.3. Figure 6.5 shows the plots of simulated and computed values (from (6.15)) of

defect level for different N and ϵ = 0.1 for an RC ladder filter which we will now discuss.

To gain insight, we examined RC ladder filter networks of varying number (n) of RC

sections as shown in Figure 6.4. The number of components is 2n. The transfer function
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Figure 6.2: Defect level (DL) as a function of number of components (N).

for an RC ladder is readily available in the literature [43, 152]. One of the coefficients of

the transfer function was subjected to non-linear optimization [53] to find MSDF for each

component. NMSDF for each of the components was found based on the coefficient of

uncertainty desired. Here we took ϵ = 0.1 and single component faults were then injected

and simulated. The component faults greater than MSDF but lesser than NMSDF which

passed the test were then used to find the defect level. Fault coverage was similarly found

based on fraction of all the faults that failed the test. It can be seen that there is good

coupling between simulated values and theoretically derived bound for both defect level and

fault coverage. It is interesting to note the following inferences from the plots in Figures 6.2

and 6.3.

• The defect level initially increases and then decreases with increasing number of com-

ponents in the circuit. The initial increase can be attributed to the fact that increasing

the component count leads to greater probability of fault masking due to departures

of component values in opposite directions. This would lead to greater probability of
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Figure 6.3: Defect level (DL) plotted against ratio of coefficient of uncertainty to tolerance
of components ( ϵ

σ
).

fault being masked. However, contrary to intuition, component values beyond a cer-

tain threshold result in decrease of defect level. This is a manifestation of stochastic

resonance, in that, a circuit with large number of components can aid those sections

of circuit that induce faults in opposite directions, thereby resulting in a lower defect

level.

• In Figure 6.2, we can see that for medium number of components, defect level is

relatively unchanged for larger coefficients of uncertainty. On the contrary ϵ has to be

made far smaller to gain in defect level.

• Fault coverage monotonically increases with the number of components as in Figure 6.3.

An increase in number of components implies a greater observability for each coefficient.

Increased observability is due to the fact that every added component need not increase

the count of number of coefficients. For example, a resistor added may not increase the

order of the circuit. This leads to more circuit components per coefficient and hence

96



Figure 6.4: RC ladder filter network of n stages.

an increased observability. This in turn increases fault coverage as more components

now have a bearing on circuit TFCs.

To further validate the bounds derived, we simulated and tested TFC based approach

on benchmark circuits proposed and maintained by Kondagunturi et al. [70]. These are

SPICE models from ITC’97 benchmark circuits and Statistical Fault Analyzer (SFA) based

models proposed by Epstein et al. [42]. The fault model chosen by us for component faults

(soft faults) is σ deviation from nominal value and for catastrophic faults we used open/short

faults. To obtain the fault coverage values, we used simulation. Each sample circuit contained

a single component fault of size ±σ,±2σ, · · · ,±10σ (without allowing negative component

values), and was simulated to determine whether the fault was uncovered by the TFC based

approach for the chosen value of coefficient of uncertainty. We chose ϵ
σ
= 0.1. The computed

and simulated values of defect level and fault coverage for each of the benchmark circuits are

tabulated in Table 6.1. In the table, the benchmark with largest component count, ITC’97e,

has about 35 components. As a result, we could not verify the tightness of bounds on large

component count circuits. To circumvent this predicament, we relied on the RC ladder filter

network of Section 6.4. Computed bound and simulated values of defect level as a function

of component count are shown in Figure 6.5.

6.5 Simulation Versus Optimization: A Trade-off

We now introduce the “simulation-optimization” tradeoff that results in a typical TFC

based analog circuit test scenario. For circuits with more than ten components, the time
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Table 6.1: Defect level and fault coverage of benchmark circuits obtained from computation
and simulation. For brevity in the table, T: Transistor, O: Opamp, R: Resistor, C: Capacitor,
N : Total number of components.

Circuit Source Component Count Defect Level(%) Fault Coverage(%)

T O R C N Comp. Sim. Comp. Sim.

Operational Amplifier #1 ITC ’97a 8 - 2 1 11 12.51 5.69 84.78 85.31
Continuous-Time State-Variable Filter ITC ’97b - 3 7 2 12 15.89 5.23 87.17 87.66

Operational Amplifier #2 ITC ’97c 10 - - 1 11 12.51 5.69 84.78 85.31
Leapfrog Filter ITC ’97d - 6 13 4 23 28 1.33 98.05 98.19

Digital-to-Analog Converter ITC ’97e 16 1 17 1 35 32.62 0.2 99.75 99.78
Differential Amplifier SFAa 4 - 5 - 9 7.72 6.43 78.57 79.18

Comparator SFAb - 1 3 - 4 7.78 3.75 49.57 50.21
Single Stage Amplifier SFAc 1 - 5 - 6 8.73 6.17 64.19 64.87

Elliptical filter SFAd - 3 15 7 25 1.02 0.99 98.61 98.72
Low-Pass Filter Lucent1 - 1 3 1 5 8.51 5.30 57.50 58.18

RC Ladder Filter (1 stage) - - - 1 1 2 2.5 1.1 55.50 57.33
RC Ladder Filter (18 stage) - - - 18 18 36 30.45 3.98 99.1 99.53
RC Ladder Filter (50 stage) - - - 50 50 100 44.05 11.58 99.7 99.8
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Figure 6.5: Comparison of defect level bounds with simulated value ( ϵ
σ
= 0.1) for RC ladder

filter network.
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required for simulation is much less compared to optimization of TFC with a coefficient of

uncertainty (ϵ > 0.1). However, for smaller component count (e.g., N = 12 resistors and

capacitors) and uncertainty coefficient (ϵ = 0.07) simulation has to be carried out at a large

number of points. The number of points where simulation must be carried out to realize

a lower ϵ increases steeply for values of ϵ ≤ 0.07 (e.g., points along edges and planes of

hypercube enclosing the coefficient instead of just the vertices are now to be simulated) and

optimization turns out to be computationally cheaper than simulation. The plot of CPU time

required in seconds against uncertainty for both optimization and simulation is plotted in

Figure 6.6. The CPU used for simulation in this plot was a Dell machine that has a 2.66 GHz

Pentium 4 processor, 1 GB RAM, and 250 GB hard disk space. Note that the time required

for optimization remains constant regardless of the value chosen for ϵ, as optimizing results

in actual MSDF where ϵ = 0. Time required for simulation decreases exponentially with

increasing ϵ. Thus there is a tradeoff between the number of circuit components, coefficient

of uncertainty (and in turn defect level) that has to be evaluated before choosing to simulate

or optimize a circuit as the computational overheads with wrong choice can be substantial.

6.6 Conclusion

We have derived the bounds for defect level and fault coverage possible in transfer

coefficient based analog circuit test. We observe that a higher component count yields lower

defect level and higher fault coverage in transfer function coefficient (TFC) based approach

for testing linear analog circuits. A possible strategy for deciding whether to use simulation

or non-linear optimization [53] to find the bounds on coefficient has been discussed. We find

that for lower defect levels it is computationally more expensive to simulate and instead we

may use non-linear optimization.

The proposed techniques can be applied to various forms of analog circuit test pro-

cedures. In recent publications, we have discussed polynomial coefficient based testing of

linear and non-linear circuits [119, 124, 125, 127, 128]. The output function of the circuit is
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Figure 6.6: CPU time (in seconds) to compute NMSDF by simulation versus coefficient of
uncertainty, ϵ.

expressed as a polynomial in the input signal magnitude. Through a proper selection of the

test inputs, the coefficients of this polynomial show high sensitivity to component variations.

The proposed technique could potentially allow the defect level and fault coverage analysis

of non-linear analog circuits.
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Chapter 7

Conclusion

Alternate test and fault-model based test methodologies leverage the dependence of out-

puts of the circuit to the variations in circuit components. In this thesis, we proposed circuit

signatures for bolstering both these test methodologies. In particular, we demonstrated para-

metric and catastrophic fault testing in analog circuits using the proposed signatures. The

signatures are based on output’s polynomial function approximation for an input stimulus

swept across the voltage and frequency range; an exponential transformation of coefficients

of the output’s polynomial function approximation; probabilistic moments of the output for

an random input signal (conforming to a known probability density function). Using the

proposed signatures sufficiently small parametric faults of sizes (≈ 5% or more) were un-

covered. The proposed signatures have also been used for diagnosis of both catastrophic

and parametric faults based on sensitivity analysis of the signatures to the circuit compo-

nents. Furthermore, the proposed high-sensitivity test signatures increase the correlation

of RF/analog circuit outputs to specification of the circuit as is desired in alternate test

methodology to minimize yield loss and defect level.

7.1 Thoughts on Future Work

Signatures proposed in this thesis can be used in a closed loop framework such that

the correlation of signatures to circuit specifications is further boosted up. Authors in [138]

propose an adaptive test methodology for analog circuits in the alternate/signature test

framework. Our preliminary studies on this approach have shown the feasibility of this

approach with in conjunction with the signatures such as polynomial coefficients and V-

transform coefficients proposed in the previous chapters.
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7.1.1 Adaptive Test With Signatures

Block diagram in Figure 7.1 shows the high-level conceptual framework of the adaptive

test methodology using circuit signatures. The circuit-under-test (CUT) is applied with a

carefully crafted stimulus, whose output is then post-processed to generate the signatures

such as polynomial coefficients or V-transform coefficients (proposed in previous chapters).

The signatures are then used to compute correlation with the actual specification based on

actual specification measurement of a small sampling of CUT at run-time. Based on the

prevailing correlation, the input stimulus is tuned to achieve optimally sensitive signatures

that has the highest degree of correlation to the circuit specification.

7.1.2 Preliminary Experiments

To our knowledge, a run-time, closed-loop tuning of the input stimulus to increase

the correlation of the circuit signature to circuit specification for analog circuits has not

been attempted before. Our initial experiments on a sample of 400 LNA circuits show

promising results on the possibility of using such closed-loop tuning on circuit stimulus

to achieve high correlation with specification, which results in lower defect level and yield

loss. Figure 7.3 shows the improved correlation between the signature, in this case, V-

transform of supply current (Idd), as opposed to just Idd and the specification IIP3 (shown

in Figure 7.2). The penalty paid in this process is the extra test-time required to process

the signatures and compute the required adjustments to the input stimulus at run-time (for

example at production). However, it turns out that even minor adjustments in the input

stimulus parameters can give rich dividends in the amount of correlation achieved through

such closed-loop tuning. Furthermore, the computation time required for computing the

change in stimulus along with the time required to initiate the change in the input stimulus

amounts to about 10% increase in the total test-time when compared to test-flows that do

not use such closed form tuning. Table 7.1 shows a comparison of three techniques, namely:

testing for the specification “as is,” using V-transform coefficients in open-loop, and using
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Figure 7.1: Block diagram of the adaptive test system based on circuit signatures.

Table 7.1: Comparison of defect level, yield loss, and test time for actual specification test,
signature test in open loop, and signature test in closed loop.

Test Method Defect Level Yield Loss Test Time (per device)

Actual specification test 0% 0% 15s

Signature test in open loop 8% 12% 100ms

Signature test in closed loop 0.8% 1.8% 105ms

V-transform coefficients in closed-loop. Actual specification testing serves as the baseline

case (or ideal scenario) for defect level (DL) and yield loss (YL). Notice that signatures

taken in open-loop result in a DL and YL of 8% and 12% respectively. Having a closed-loop

tuning of the stimulus improves DL and YL to 0.8% and 1.8% with a 5% time-penalty over

the open-loop case. But both these techniques give close to a 100x improvement in test-time

over the baseline case (of measuring actual specification). More experiments are needed to

study how this procedure would scale when the number of CUT are large and any other

inadequacies of this approach.
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Figure 7.2: Scatter plot of tested devices showing defect level and yield loss for the open
loop signature test, where the input stimulus is not tuned adaptively.

7.1.3 Estimating Defect Level in Analog and Radio-Frequency Circuit Testing

The strong correlation between circuit signatures and circuit specifications, and the

correlation among circuit specifications themselves can be used to design an optimal set of

tests for specifications that will achieve a desired defect level in the tested parts. A small

subset of specifications of the circuit that is strongly correlated with the all the specifications,

herein referred to as pre-test covers all the specifications to the desired defect level. The

goodness of a pre-test (could either be circuit signature or even specification test) can then

be characterized as the number of specification tests that it eliminates at a desired defect

level. Research along this line is important in making signature based testing relevant

and useful in a practical setting like production testing of high-volume integrated circuits

in foundries since the biggest concern in adoption of such alternate test strategies is the

unknown extent of defect level resulting from eliminating an actual specification test in lieu

of signature [136, 26].
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Figure 7.3: Scatter plot of tested devices showing defect level and yield loss for the closed
loop signature test, where the input stimulus is tuned adaptively.
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Appendix A

Some Theorems on Nonlinear Systems

Theorem A.1 If coefficient ai is a monotonic function of all parameters, then ai takes its

limit (maximum and minimum) values when at least one or more of the parameters are at

the boundaries of their individual hypercube.

Proof. Let ai be a function of three parameters say x, y and z. Let ai reach its maximum

value for (x0, y0, z0). Further let x0, y0 ̸= α. Now if we can show that the maximum value of

the coefficient ai occurs at z0 = α we have proved the theorem. From definition of monotonic

dependence of ai on circuit parameters, (A.1) follows.

ai(x0, y0, α) ≥ ai(x0, y0, z0) ∀z0 ≤ α (A.1)

As the maximum value taken by z = α, it follows that z0 = α. With similar arguments we

can show that the minimum value for coefficient occurs when z0 = −α. Hence the statement

of theorem follows.

Theorem A.2 In polynomial expansion of Non-Linear Analog circuit there exists at least

one coefficient that is a monotonic function of all the circuit parameters.

Proof. Consider the block diagram in Figure A.1 which models an 2nth order Non-

Linear analog circuit. x is applied input and y is the response, a1 · · · an are input summed

at each stage. The coefficient corresponding to input x raised to the 2nth power is given by

G in (A.2).

G =
n∏

i=1

g2ii (A.2)
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Figure A.1: A possible system model for a non-linear circuit.

where gi ∀i = 1 . . . n are the monotonic gains of individual stages in the cascaded blocks.

As the product of two or more monotonic functions is also monotonic we have G to be a

monotonic function. G constitutes the coefficient of the nth power of x in this expansion, as

it lies in the main signal flow path from input to output. Thus it is proved that there is at

least one monotonically varying coefficient in a polynomial expansion of a non-linear analog

circuit. Further, in general the coefficient of 2nth power of such a polynomial expansion is

monotonic.

Theorem A.3 A continuous non-monotonic function f : ℜ → ℜ can be decomposed into

piecewise monotonic functions of the form:

f(x) = f(x)u(x0 − x) + f(x) (u(x− x0)− u(x− x1))+

f(x) (u(x− x1)− u(x− x2)) + · · ·

+f(x) (u(x− xn−1)− u(x− xn))

(A.3)

where x0, x1, · · · xn are all stationary points of f(x) and

u(x) =


1 ∀ x ≥ 0

0 ∀ x < 0

Proof. By Rolle’s theorem [72], if f : ℜ → ℜ is any continuous and differentiable

function in the open interval (a, b) and f(a) = f(b), then there exists c ∈ (a, b) such that

f ′(c) = 0. To extend this result, suppose f(x) is increasing in the interval (a, c−), that is

f ′(x) > 0 ∀x ∈ (a, c−) and decreasing in the interval (c+, b) that is f ′(x) < 0 ∀x ∈ (c+, b)

then at point c, f ′(c) = 0. In general for a continuous function f over arbitrary interval
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Figure A.2: Non-linear, non-monotonic function decomposed into piecewise monotonic func-
tions.

(α, β) there exists countable number of points xi such that f ′(xi) = 0 as f(x) changes its

monotonicity. Now that we have shown xi are stationary points, it follows that f(x) is

monotonic between any two stationary points, i.e., in the interval (xi−1, xi). The windows

generated by the step function u(x) ensures that each term in the summation in (A.3) is

monotonic. A typical example is shown in Figure A.2, where f(x) alternates its monotonicity

at 6 points namely x0 through x5 and at each of these points slope is zero and f’(x)=0.

f(x) can be expressed as sum of monotonic functions separated by windows in the intervals

(x0, x1) , (x1, x2) , (x2, x3) , (x3, x4) , (x4, x5).
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Appendix B

Output Variance of RC Filter

R

C vovin

Figure B.1: First order RC low-pass filter.

We use the frequency domain approach to find the transformed RV for Gaussian noise

input excitation of a first order RC filter of Figure B.1. The transfer function of that filter

is given by

H(s) =
Vo(s)

Vi(s)
=

1

sRC + 1
=⇒ |H(jω)|2 =

1

(ωRC)2 + 1
(B.1)

With white noise as the input, the discrete values are sampled Gaussian RV of zero mean

and variance = No

2
. The output of this filter which is the filtered response is given by vo and

its frequency domain expression is given by

|Vo(jω)|2 =
1

(ωRC)2 + 1
|Vi(jω)|2 (B.2)

To compute the effective second order moment we integrate this output over all frequencies,

i.e., ω = (0,∞).

µ2 =

∫ ∞

0

(
dω

(ωRC)2 + 1

)
No

2

=
1

RC

No

2
arctan(ωRC)|∞0 =

Noπ

4RC
(B.3)
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