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Behavior-Based Robot Navigation on Challenging
Terrain: A Fuzzy Logic Approach

Homayoun SerajiFellow, IEEE,and Ayanna Howardviember, IEEE

Abstract—This paper presents a new strategy for be- in which the boundaries of perceived classes are fuzzy. For
havior-based navigation of field mobile robots on challenging instance, a human can drive a car off-road on a rough terrain
terrain, using a fuzzy logic approach and a novel measure of \;sing perceptions of the physical environment, rather than with
terrain traversability. A key feature of the proposed approach is - . . . . .
real-time assessment of terrain characteristics and incorporation exact ||.’1formaft|on about locations and s!zes of objects therein.
of this information in the robot navigation strategy. Three terrain 1 he driver adjusts the speed and steering of the car based on
characteristics that strongly affect its traversability, namely, his subjective judgment of the surface conditions, e.g., the car
roughness, slope, and discontinuity, are extracted from video speed is decreased in off-road driving on a bumpy and rough
images obtained by on-board cameras. This traversability data erain putisincreased on a smooth and flat surface. The human

is used to infer, in real time, the terrain Fuzzy Rule-Based drivi ti tivated b fi f the t .
Traversability Index, which succinctly quantifies the ease of riving actions are motivated bperceptionsor the terrain

traversal of the regional terrain by the mobile robot. A new duality and obstacles, and not by explicit modeling and analysis
traverse-terrain behavior is introduced that uses the regional of the surface conditions. It is highly desirable to capture the

traversability index to guide the robot to the safest and the most expertise of the human driver and to utilize this knowledge to
traversable terrain region. The regional traverse-terrain behavior develop autonomous navigation strategies for mobile robots

is complemented by two other behaviors, local avoid-obstacle and = loai id ¢ d lishing thi |
global seek-goal. The recommendations of these three behaviors™ Y4ZY 10gIC proviaes a means tfoward accomplishing this goal.

are integrated through adjustable weighting factors to generate ~ The theory of fuzzy logic systems is inspired by the re-
the final motion command for the robot. The weighting factors markable human capability to operate on and reason with

are adjusted automatically, based on the situational context of the perception-based information [2], [3]. Rule-based fuzzy logic
robot. The terrain assessment and robot navigation algorithms are provides a scientific formalism for reasoning and decision

implemented on a Pioneer commercial robot and field-test studies Ki ith tai d i - inf fi =
are conducted. These studies demonstrate that the robot possessegna Ing with uncertain and Imprecise information. Fuzzy

intelligent decision-making capabilities that are brought to bearin  l0gic provides a formal methodology for representing and
negotiating hazardous terrain conditions during the robot motion. implementing the human expert’'s heuristic knowledge and

Index Terms—Behavior-based navigation, fuzzy logic, mobile perpeption-based actions. Qsing the fu;z.y logic framework, the
robots, robot navigation, rough terrain, sensor-based navigation, attributes of human reasoning and decision making can be for-
traversability. mulated by a set of simple and intuitive (antecedent)rHEN
(consequentyules, coupled with easily understandable and
naturallinguistic representations. The linguistic values in the
rule antecedents convey the imprecision associated with the

UMANS have a remarkable capability to perform gerceptions, while those in the rule consequents represent

wide variety of physical and mental tasks without anthe vagueness inherent in the reasoning processes. In other
explicit measurements or computations. Examples of everydaygrds, fuzzy rule-based systems generate actions based on
tasks are parking a car, driving in city traffic, playing golfperceptions. The operational strategies of the human expert
cooking a meal, and summarizing a story. In performing suefiiver can be transferred via fuzzy logic to the robot navigation
familiar tasks, humans ugerceptionf time, distance, speed, strategy in the form of a set of simple conditional statements
shape, and other attributes of physical and mental objects [d¢mposed of linguistic variables. These linguistic variables are
Reflecting the bounded ability of the human brain to resolwgefined by fuzzy sets in accordance with user-defined mem-
detail, perceptions are intrinsically imprecise. Perceptions asership functions. The main advantages of a fuzzy navigation
well beyond the reach of traditional methods, which are basetiategy lie in the ability to extract heuristic rules from human
on mathematical modeling and analysis. Instead, percepti@xperience, and to obviate the need for an analytical model of
are described by propositions drawn from a natural languagige process.

The natural appeal of fuzzy logic to robot navigation has mo-
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both terrestrial and in space, which have strongly motivated thisSimmonset al. [6], Goldberget al. [7], and Singhet al. [8]
research. For instance, NASA has planned an ambitious setofmpute an analytical traversability measure for the terrain,
missions to Mars that will carry mobile robots (rovers) to exsased on stereo range data. Roll, pitch, and roughness of
plore the Martian surface and to carry émtsitu science mis- terrain cells are estimated from the viewable terrain image.
sions. Similarly, the US Department of Defense (DOD) is spoiRoll and pitch are calculated by using a least-squares method
soring several research projects that involve autonomous nm<it a plane to the range data, and roughness is computed as
bile robots operating on rough natural terrain. However, despttee residual of the fit. These measures are normalized in the
widespread applications of outdoor navigation, there are feange [0,1] and a goodness value is determined, based on the
existing methods for field robot navigation that consider thminimum value of the three parameters. A certainty factor is
terrain characteristics [5]-[15]. In the existing methods, terraaiso calculated as a function of the number and distribution of
traversability is often defined as an analytical function of the terange points within a cell. A path planner then evaluates the
rain slope and roughness. The slope is determined by finding theeversability along predetermined candidate paths by taking
least-squares fit of a geometric plane covering the region, whdeneighted combination of the goodness and certainty values.
the roughness is calculated as the residual of the best-planeMiittes for each path are then sent to an arbiter that determines
Once the traversability of each region is found, a traversalile best path to traverse.
path for the robot is then constructed. Langeret al. [9] focus on the development of a navigation
This paper develops a new approach for robot navigation eystem that generates recommendations for vehicle steering,
challenging terrain using a perception-based linguistic frameased on the distribution of untraversable terrain regions.
work. Robot navigation is accomplished using fuzzy logic ruléraversability is determined by combining elevation and
statements, as an alternative to conventional analytical methaglepe information to classify cells as obstacles. Those cells
The premise of the proposed approach is to embed the hunhaning slope values above a given threshold are classified as
expert’s heuristic knowledge into the mobile robot navigationntraversable. Cells without enough range information are
strategy using fuzzy logic. The proposed approach is highiywt classified, allowing the rover to approach these areas and
robust in coping with the uncertainty and imprecision that aretrieve additional information if necessary. Based on the
inherent in sensing and perception of natural environmentgcation of obstacle cells, a steering command is generated by
The robot navigation strategy developed here is comprisedagfmbining votes from multiple behaviors and deciding on the
three independent behaviors, regional traverse-terrain, lob&st command. Votes are given continuous values betwéden
avoid-obstacle, and global seek-goal, that recommend motnd +1 based on the height and position of obstacle points
commands for the robot. The recommendations of these hgsated within the image.
haviors are then integrated with adjustable weighting factors toFinally, Gennery [10] uses estimates for slope and rough-
yield an autonomous navigation strategy for the mobile roboess at equally spaced grid points to compute a cost function
that requires na priori information about the environment.  for traversability. Slope is computed by fitting a weighted least-
The paper is organized as follows. Some of the existing nasquares plane to a height map, and using the residual of the fit to
igation methods are reviewed in Section Il. The robot navigastimate roughness. An analytical function representing the cost
tion architecture and elemental behaviors based on terrain, obdriving over each grid point is then calculated, based on the
stacle, and goal information are presented in Sections Ill-\firobability that the slope and roughness are less than maximum
The integration of these behaviors into a unified robot navigtireshold values. This probability of traversability is approxi-
tion strategy is discussed in Section VII. Section VIII summamnated based on a Gaussian error distribution.
rizes the key attributes of the proposed approach and comparesit
with existing methods. Section IX describes the implementatidi. STRUCTURE OFBEHAVIOR-BASED NAVIGATION STRATEGY
of the navigation strategy on a commercial mobile robot, and
presents field-test studies that demonstrate the intelligent nay
igation capability of the robot on challenging terrain. Finallyd
Section X gives a brief conclusion.

In behavior-based robot navigation systems, goals are
hieved by subdividing the overall task into small indepen-
ent behaviors that focus on execution of specific subtasks.
For example, a behavior can be constructed which focuses
on traversing from a start to a goal location, while another
behavior focuses on obstacle avoidance. The basic building
Il. REVIEW OF EXISTING NAVIGATION METHODS block of the proposed navigation strategy ibehaviot In our
) ) . . strategy, each behavior is composed of a set of fuzzy logic rule
In this section, we review some of the existing methods fQtatements aimed at achieving a given desired objective. There
robot navigation on natural terrain. Lacroet al. [5] execute .o o types of rules for each behavinavigationrules and

the navigation behavior based on terrain quality. The terrain\{3;qhtryles. The navigation rules consist of a set of fuzzy logic
classified in four distinct categories: flat, uneven, obstacle, aﬂ.‘ﬂes for robot translation and rotation of the form

unknown. Based on three—dimensional image data, the terrainis

segmented into cells, and each cell is labeled based on different IF C, THEN A 1)
terrain characteristics such as point density, altitude, and mean

vector. A Bayesian classification methodology is employed, imhere theconditionC' is composed of fuzzy input variables and
which an estimate of the probability for each label is determinddzzy connectivesAND, OR, NOT) and theaction A is a fuzzy
from prior learning, based on prototypes classified by humansutput variable (see Sections IV-VI). Equation (1) represents
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the general form of a typical rule in a set of natuiaguistic the difficulty of a terrain region for traversal are the rough-
rules. This is analogous to the actions taken by an expert hunmass, slope, and discontinuity of that region. A subsequent paper
driver based on the prevailing conditions, e.g., from a safef§8] documents the process for extracting these characteristics
perspectivelF road is icy, THEN speedis slow. The output of fromimagery data obtained from cameras mounted on the robot.
each behavior is a recommendation over all possible motidhese characteristics are represented in a fuzzy logic frame-
commands from the perspective of achieving that behaviokigrk, using perception-based linguistic fuzzy sets, and are used
objective. Multiple behaviors can be active simultaneously o infer the Fuzzy Rule-Based Traversability Index.
the navigation strategy, each aimed at achieving one specificl) Terrain Characterization:Unlike existing methods that
subgoal. Integration of multiple behaviors is implemented byompute the terrain roughness analytically as the residual of the
combining the outputs (recommendations) of all active behavest-plane fit, the measure of terrain roughness proposed here
iors using their weight rules. For each behavior, the weight rulesbased on the sizes and concentrations of rocks in a viewable
consist of a set of fuzzy logic rules for weight assignment of themage scene using simple linguistic rules [18]. The proposed ap-
general form proach is perception based, and is analogous to the human ob-
server’s visual judgment of terrain roughness. An object in the
IF S, THEN W (2) terrain image is classified as a rock if its characteristics differ
from the ground surfaée The rock-detection algorithm identi-
whereS is a logical statement describing a physisdiliation fies rock objects located on the ground plane, and determines the
and W represents a fuzzy expression of theighting factor sizes and concentrations of rocks contained within the image.
with which that behavior's recommendation is considered iFhis information is then converted into theMALL, LARGE}
the prevailing situation (see Section VII). For instance, for tHezzy sets for rock size, andrgw, MANY} fuzzy sets for rock
safety behavior of the human drivef, sunlightis low, THEN concentration. The terrain roughness is represented by the three
safety weighis high. For each behavior, the recommendation dinguistic fuzzy sets §MOOTH, ROUGH, ROCKY, and is derived
navigation rules is scaled by the gain obtained from the weigthtectly from the rock size and concentration parameters of the
rules. The weighted combination of all the behaviors’ reconassociated image scene using the following intuitive rule set:
mendations is then defuzzified and issued as a command to th@) |r S is SMALL AND C is FEW, THEN /3 iS SMOOTH;
mobile robot wheel actuators for execution. Equations (1) and2) |r S is SMALL AND C' iS MANY, THEN /3 iS ROUGH;
(2) represent a framework for embedding the human expert's3) |r S is LARGE AND C is FEW, THEN /3 iS ROUGH;
knowledge into the robot navigation strategy. 4) IF S is LARGE AND C' is MANY, THEN /3 iS ROCKY;

The robot navigation strategy proposed in this paper is COjrere S is the rock size(” represents the rock concentration,
prised 'of three simple pehawors. These beha_vlors operateal 3 denotes the corresponding terrain roughness. The
three different ranges, with the seek-goal behavigiaial, the  mempership functions for the three fuzzy roughness classes
traverse-terrain behavior edgionaland the avoid-obstacle be-5.6 shown in Fig. 1(a). Note that multiple rules can be active
havior atlocal ranges. Note that the new regional traverse-t€ the same time. To further ensure that this approach gives a
rain behavior introduced in this paper complements the 1068l ceptual, linguistic definition of terrain roughness as used by
avoid-obstacle and global seek-goal behaviors commonly useg\,man observer, an optimization technique can be applied

in behavior-based navigation systems. We shall now descrifg; agjusts the membership function parameters based on the

the three elemental behaviors. perceptual performance of a human expert [19]. This process is
accomplished by having human experts classify the roughness
IV. REGIONAL TRAVERSE TERRAIN BEHAVIOR characterizing various terrain image scenes by visual examina-

The problem addressed in this section is to navigate a mol:}ﬂ%n;c In this way, tr;e hl_mean expert e;]cts as a_suplerwsor 0 teach
robot to the safest and most traversable region of a natural t@e uzzy_terram classinher to mimic human visua percept_|0n.
rain. The section is comprised of two parts. In the first part, a Ve define slope as the inclination of the ground plane with re-

perception-based traversability index is inferred for each terraiRECt tO the robot's current angular tilt. To determine this lateral
region, based on real-time assessment of the terrain quality SiP€ Parameter, an approach [18] is used to obtain elevation in-
tracted from on-board sensory data. In the second part, a ation from two uncalibrated cameras. The process involves

technique for terrain-based navigation is developed, in Whigf"f‘ining an artificial ”el%fa' network to leam thg rela'.[io.nship be?
the terrain traversability index is used directly in the robot navﬁ\_/veen slope and coordinates of correlated points within a terrain

gation logic so as to guide the robot toward the most traversalfli29€: The network is trained on typical imagery data repre-

terrain. The terrain assessment and robot navigation rules rapnting different positive and negative sloped surfaces. Points
I f:ated on the ground plane at a position furthest from the robot

resent, respectively, the visual judgment and driving actions &) = i i
a skillful human driver operating the vehicle. are extracted from mgltlple images and. feq as inputs mtp the
network. The network is then trained by finding a set of weights
that produce the desired slope output, given the set of data input
values. Once the learning process is completed, it is utilized to
In recent papers [16], [17], the conceptfafzzy Rule-Based extract the slope during run time. The output of the network
Traversability Indexs introduced as a simple measure for quan-

tifying the suitability of a natural terrain region for traversal ithe termyockis used here in the generic sense to imply both positive obsta-
by a mobile robot. Three important attributes that characterizes (rocks) and negative obstacles (ditches).

A. Real-Time Terrain Assessment
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smooth rough rocky roughness, slope, and discontinuity characteristics as shown in

1 Figs. 1(a)-1(c). For instance, robots with larger wheels can

climb bigger rocks, and this fact can be reflected in definition

1N () of the membership functions f@MALL andLARGE fuzzy sets
for rock size.
o B B 5 B 5 B 2) Terrain Traversability Index:The Fuzzy Rule-Based
! 2 3 4 3 Traversability Index combines the three terrain quality param-
@) eters into a single indicator of ease of traversal of the terrain

flat sloped stee by the mobile robot. The Traversability Indexis represented
P P by the three linguistic fuzzy seta §w, MEDIUM, HIGH}, with

1
the membership functions shown in Fig. 1(d). These indices
K (@) correspond to terrains that are unsafe, risky, and safe for
traversal, respectively. The Traversability Indeis defined in
o terms of the terrain slopa, the terrain roughnes8, and the

0 | o2 &5 O s terrain discontinuity by a set of simple intuitive fuzzy logic
(b) relations as follows:
1) IF «x iS FLAT AND /3 iS SMOOTH AND § iS SMALL, THEN 7 IS
small large HIGH.
1 2) IF v iS FLAT AND /3 iS ROUGH AND § iS SMALL, THEN 7 iS
n(8) MEDIUM.
3) IF « iS SLOPED AND/3 iS SMOOTH AND 6 iS SMALL, THEN 7
iS MEDIUM.
5 4) IF v iS SLOPED AND 3 iS ROUGH AND § IS SMALL, THEN 7
0 8, 3, 8y iS LOW.

5) IF o ISSTEEP OR3Z ISROCKY OR$ IS LARGE, THENT IS LOW.

© The last rule states that a terrain region witlsT@EEP slope,
low medivm high or aROCKY roughness, or aARGE discontinuity is unsafe for

1 traversal, regardless of the values of the other two parameters.
M () Note that multiple rules can be active at the same time and the
fuzzy classes have overlaps; hence, the Traversability Index can

have, for instance, both OMeDIUM and 0.5HIGH membership
T values. This approach lends itself to a perception-based, lin-
guistic definition of terrain traversability as used by a human ob-
@ server, in contrast to a mathematical definition of traversability
]lfig- 1. (fa) Mem_berlship functionsbforhter][ain _roug?neSS- (b)dMemeFSh(&s an analytical function of slope and roughness) used in ex-
(g?ﬁ'g&sbe?;;?;rzﬂ;igﬁz'fgﬁ)tgsgszgfng)inudn;)yons or terrain 'Scom'n“'tYsting methods. The multivalued _n_ature of th_e p_rpposed fuzzy
logic representation of traversability offers significant robust-

gives the terrain slope value, whose magnitude is then convertéd> and tolerance to the large amount of uncertainty and im-

into the three linguistic fuzzy sets{AT, SLOPED, STEEP, with precision inherent in sensing and perception of a natural terrain.
' : ’ his robustness is due to the fact that the output of a rule-based

the membership functions shown in Fig. 1(b). The process of r tem d td d on eactval £ the input vari
fining the membership functions by embedding human kno yStem does Not depend on Exeactvalues of the Input var-
ables. This allows each input variable to change over a range of

edge can also be applied in this instance. | ithout affecting th ¢ tout
An exception to the slope determination algorithm involve¥®!Ues without atecting the system output.

detection of terrain features such as cliffs, valleys, and ravines.
For such features, the ground plane will have zero slope, and ?e
the terrain directly adjacent to the ground surface will have ap-The motion control variables of the mobile robot are the trans-
proximately a+90° incline. For these cases, we determine tHational speed and the rotational speed (or turn raig)where
existence of a cliffivalley/ravine based on the separation dis—= \/(dz/dt)? + (dy/dt)?, w = (df/dt), andz, y andd are
tance between the two adjacent regions. We characterize this position coordinates of the robot center and the robot orien-
separation distance by the two linguistic fuzzy sets4LL, tation in a user-defined coordinate frame of reference, respec-
LARGE}, with the membership functions shown in Fig. 1(c). tively. The robot speed is represented by the three linguistic
Note that the definitions of the above classes of terrain chdinzzy sets §ToP, sLow, FAS}, with the membership functions
acteristics depend on the wheel design and traction meckhewn in Fig. 2(a). Similarly, the robot turn ratas represented
nism of the robot, which determine its hill climbing and roclby the seven linguistic fuzzy sets ARGE-NEG, MEDIUM-NEG,
climbing capabilities. This dependence is reflected in the S&WALL-NEG, ZERO, SMALL-POS, MEDIUM-POS, LARGE-PJS with
lection of the membership functions used to represent ttlee membership functions shown in Fig. 2(b), wheostive

0 T Ty T3 T4

i Terrain-Based Navigation
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Fig. 2. (a) Membership functions for speed. (b) Membership functions for turn rate.

left), LF (left-front), and L (left), and have the central angular
values of+75°, +45°, +15°, 0°, —15°, —45°, and —75° rel-

ative to the front direction, respectively. These seven sectors
correspond to the seven classes of turn rate discussed earlier.
In other words,LARGE-POSturns the robot to face thRIGHT
sector,MEDIUM-POS to the RIGHT-FRONT sector,SMALL-POS to

the FRONT-RIGHT sectorZEROto theFRONT sector, and likewise

for negative turn rates. The Traversability Indices for the above
Seven regions;,., 7,.¢, -, Tf, T, Tif, andr, are inferred from

robot the perceived values of the terrain slope, roughness, and discon-
tinuity of each region obtained by the vision system on board
the robot.

We shall now discuss the fuzzy logic rules for deter-
Fig. 3. Decomposition of terrain into seven sectors. mination of the robot turn rate and speed, based on the

terrain-traversability data. Note that if higher resolution is
andNEGative turn the robot to right and left directions, respeaieeded, the terrain in front of the robot can be decomposed into
tively. These turn rates are used to change the robot heading a@rger number of smaller sectors, and similar navigation rules
place the robot in an appropriate terrain sector. can be developed.

In this section, the Traversability Index is used to develop 1) Turn Rules: We develop a two-step procedure for deter-
simple rules for determination of the robot turn rate and speetning the turn rate. In the first step, we find ttin@sttraversable
while moving on a natural terrain. It is assumed that the robséctor in the right and left regionsdependentlywith prefer-
can only move in the forward direction (i.e., reverse motion ince (bias) toward the front direction. In the second step, we de-
not allowed). As shown in Fig. 3, the terrain available for robdermine the best sector among the preferred-right, preferred-left,
traversal is divided up into a rectangular front sector and sand front sectors.
30° circular side sectors with radius wherer is the user-de-  The turn rules for the first step are summarized in Table I(a)
fined regional perception rangef the robot, i.e., the distance (for the right sector) to find the preferred-right (PR) sector with
at which we wish the robot to react to the regional terrain chafuzzy Traversability Index,,, where LP iS ARGE-POS MP is
acteristicd. These sectors are labeled from right to left as ReEDIUM-POSand SP iSMALL-POS. For instance, the (1, 1) ele-
(right), RF (right-front), FR (front-right), F (front), FL (front- ment of the top layer in Table I(a) can be written outras, is

OW AND 7. IS HIGH AND Trf iS HIGH, THEN w iS MEDIUM-POS,
2Note that the regional perception range is less than or equal to the senS|

envelope of the on-board terrain sensors. The valuedetermines the location & aldl the entire bottom layer can be written outrasy,. is HIGH,
of the regional terrain boundary borizon linein [18]. THEN w iS SMALL-POS. Observe that the rules have a tendency
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(a) TURN RULES TO SELECT PREFERREBRIGHT (PR) SECTOR
(b) TURN RULES FOR THETRAVERSETERRAIN BEHAVIOR
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the membership functions of PN and PP. For instamce; is
LOW AND 7, iS HIGH AND 7, IS HIGH, THEN w is NOP. The ad-
vantage of usingiop over choosing either negative or positive

hi . as the recommended turn rate is that it does not force the robot to
oh medum __low K4 choose between left and right directions arbitrarily at this stage
high ? low ,
;;fedium /MP/MP /MP /i keeping both options equally open for selection later. The final
/LP/MP /MP / : selection will be made wheworis integrated with turn recom-
I% p ﬁp /SP / : mendations from other behaviors.
p. ¢ . . ; 2) Move Rules:The translational speed of the robot is deter-
' high i medium  low E A _mined by the quali_ty o_f th_e terrain sector facing the robot_, that
b, hlgh/ MP/EMP/MP /g medium |fs, Ts. Th|_s determination is formulated as a set of three simple
b medium : ; uzzy logic rules for speed of traverse as follows.
ow >~ sp  SP S ; 1) IF 7/ iS LOW, THEN v iS STOP
iA’ /sp /sp/ : 2) IF 7 is MEDIUM, THEN v iS SLOW.
¥ o medudh 1 ' 3) IF 74 iS HIGH, THEN v IS FAST.
‘ AL S Note that when the robot turns to f t ble terrai
: high t ioh ote that when the robot turns to face a more traversable terrain
3 Ted > se i sp_~sp_ hig sector, the front traversability index is updated automatically
' m 'ysp/ sp/ sp/ based on the new terrain quality information.
i fow, H
' P SP;
SP/ S / / V. LocAL AvoID-OBSTACLE BEHAVIOR
@ In a manner similar to the traverse-terrain behavior, it is
high mediur®  low % assumed that there are seven groups of proximity sensors
high ! low mounted on the robot facing the seven sectors of right,
ol i AOP/ PN/ PN 5 right-front, front-right, front, front-left, left-front and left.
medium~“pp _~Nop > PN E These sensors report the distances between the robot and
low H the closestobstacle in each of the seven sectors, namely
PP PP zZ ' '
/ / / ;/T ; {dv,drs,dgr,ds,dg, diy,di}. Each obstacle distance is
' i high mediurh low 7 represented by the three linguistic fuzzy set&HRY-CLOSE,
T hi%op/i PN/ PN 5 medium CLOSE, DISTANT}. The collision avoidance navigation rules are
| medium 20 / 7 77 / i discussed below.
§IOW/;P/Z /z / A. Turn Rules
. i . ;gr : The fuzzy logic turn rule sets are similar to those described in
o e jmedvm oWy Section IV-B.1, withr replaced byZ and (I dium, high
- high 7 /- 7 /Z / high ection 1V-B.1, withr replaced byl and (low, medium, high)

> "

5 medium Z/Z i 7 /

(b)

replaced by (very-close, close, distant) in Table 1(a)-I(b). Note
that wher iSDISTANT, i.e., the front sector of the robot is clear

of obstacles, the robot will not collide with any obstacles and no
corrective action needs to be taken. Again, as in Section I1V-B.1,
when preferred-right and preferred-left sectors are equally ob-
stacle free and better than the front sector, this behavior will

(bias) to select the direction that is closest to the front diretecommendior (negative-or-positive) for the turn rate.
tion, so that the robot does not make unnecessary rotations. A
similar rule set can be produced for the left sectors by replaciBg Move Rules

7 and P byl and N. The outputs of the first step are the pre- The robot speed is based on the closest obstacle distance in

ferred-positive (PP) and preferred-negative (PN) turn rates @&ge front sector facing the robot, that i&;. The speed rules are
sociated with the preferred-right and preferred-left sectors. TBg follows.
turn rules for the second step are shown in Table I(b), witere 4
stands fozero. These rules compare the preferred-right (PR), 2) IF dj is CLOSE, THENw iS SLOW.
preferred-left (PL), and front (F) sectors, and select the most3) IF d iS DISTANT, THEN v iS FAST.
traversable sector among them. Observe that a turn maneuyer.
. - . : gain, note that when the robot turns to face a more ob-
is not initiated when either the front sector is the most travers: . )
: tacle-free sector, the front obstacle distadgeis updated

able, or the preferred-right and preferred-left sectors have e )

AR ; automatically.
same traversability indices as the front sector. Notice that in
Table I(b), when the robot needs to turn, but the PR and PL
sectors have theametraversability indices, then the recom-
mended turn rate iROP (negative-or-positive), where NOR In this section, we present a set of fuzzy logic navigation rules
OR (PN, PP). The membership function oforis the union of that drive the robot from a known initial position to a user-spec-

) IF ds is VERY-CLOSE, THENv iS STOP.

VI. GLOBAL SEEK-GOAL BEHAVIOR
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ified goal position, regardless of the terrain quality or obstacEmploys a prioritization scheme wherein the recommendation
presence. In these rules, the robot initially performs an in-placé only one behavior with the highest priority is selected,
rotation toward the goal to nullify the heading error. Once thehile recommendations of the remaining competing behaviors
robot is aligned with the goal direction, it then proceeds towaxdith lower priorities are ignored. Unfortunately, this type of
the goal position on a straight path. A similar rule set can alspproach leads to inefficient performance in certain situations.
be formulated for robots that are unable to perform in-place rBer example, a robot encounters an obstacle situated directly
tation. For this class of robots, the robot is commanded to mowe front of its current path and the avoid-obstacle behavior
slowly toward the goal while turning simultaneously to face this selected. The robot then decides to turn left to avoid the

goal position. obstacle. However, the goal is located to the right, but since
the avoid-obstacle behavior is not privy to this information,
A. Turn Rules its decision hampers the progress of the seek-goal behavior.

Other techniques, e.g., [22], focus on combining the output
of each behavior using predetermined weighting factors. This
leads to direct conflicts in execution when multiple behaviors
give contrary commands. For example, the avoid-obstacle
behavior commands the robot to turn left to avoid collision with
a forward obstacle, while the seek-goal behavior commands
. . the robot to turn right in the direction of the goal. Combining
% :E i :2 ggﬁt "\:"AEFS'RUI'\C";;_'RT'GTHHTIL:;';E;\; fA':CLV'EE_EgJSM‘POS each behavior’'s output can re;ult in a command directing the
_ ' ' ) ) robot to move forward, which will cause the robot to eventually
whereg is the heading error (goal bearing) and is represented Byjjide with the obstacle. To deal with these limitations, other
the seven linguistic fuzzy setSpAL FAR-LEFT, GOAL MEDIUM-  girategies have employed fusion methodologies in which each
LEFT, GOAL LEFT, GOAL HEAD-ON, GOAL RIGHT, GOAL MEDIUM-  hehavior is allowed to affect the final output based on the

The rules for the robot rotational motion are as follows:

1) IF ¢ IS GOAL FAR-LEFT, THENw iS LARGE-NEG,

2) IF ¢ iS GOAL MEDIUM-LEFT, THEN w iS MEDIUM-NEG;
3) IF ¢ iS GOAL LEFT, THEN w iS SMALL-NEG;

4) IF ¢ iS GOAL HEAD-ON, THEN w IS ZEROQ,

5) IF ¢ iS GOAL RIGHT, THEN w IS SMALL-POS,

RIGHT, GOAL FAR-RIGHT}. situational context [4], [23], [24]. Saffiotti [4] focuses on using
the process of context-dependent blending (CDB) in which the
B. Move Rules current situation is used to decide between behaviors using
The following rules are used for the robot translationdtizzy logic. For example, the outputs from the avoid-obstacle
motion: and seek-goal behaviors are combined with equal weights
1) IF d is VERY-NEAR OR ¢ iS NOT GOAL HEAD-ON, THEN until a situation occurs in which priority must be given to one
v iS STOP behavior. Such a situation will occur when an obstacle is very

2) IF d iS NEAR AND ¢ iS GOAL HEAD-ON, THEN v is sLow; close and, to avoid immediate collision, obstacle avoidance

where d is the position error (goal distance) and is repré)—ecomes the main concern. Independently, Turestel. [23]

sented by the two linguistic fuzzy setsHRY-NEAR, NEAR} de\_/elop an appr_oach_ similar to conte_xt-dependent ble_nding, in
when the robot is close to the goal. The above rules slo\W'Ch. an adgptlve hierarchy of multiple fuzzy behgwors are
down the robot motion as it gets close to the goal. The fir Pmblned using the concept of degree-of-applicability (DOA).

rule also keeps the robot stationary while it is correcting i this case, certain behaviors are allowed to influence the

heading. Observe that when the robot is far from the go%verall behavior as required by the current situation and goal.

its speed is dictated by the local obstacle distance and the r('g)_senblatt [24] develops the distributed architecture for mobile
rHavigation (DAMN), in which a centralized arbitration of votes

gional terrain quality, and is generated by the move rules | ded by ind dent behavi bi int ified
the local avoid-obstacle and regional traverse-terrain bendyOV!C€d Dy Independent behaviars combines Into a unie
tput. This approach differs from the others in that behaviors

iors. In this case, the seek-goal behavior does not contribd . . . . :
to the robot speed. can'vote elther for or against ce'rt'aln vehicle actions, rather.than
having to decide on one specific output. The DAMN arbiter

selects the output command associated with the most votes.

The behavior fusion methodology we employ in this sec-

The regional traverse-terrain behavior, the local avoid-oben is motivated by the approaches used by Saffioti [4] and
stacle behavior and the global seek-goal behavior describathstelet al. [23]. Independent behaviors are executed in a
in Sections IV=VI compete for control of the mobile robot byconcurrent fashion, and depending on the situational context,
issuing independentmotion recommendations for theame the outputs are blended together. Each behavior is assigned a
vehicle. These different recommendations must therefore Wweighting factor, and these factors are adjusted dynamically ac-
reconciled and fused in order to generate the final moti@mording to the weight rules. The weighting factors determine
command. To resolve conflict among behaviors, a strategy mtis¢ degree of influence of each behavior on the final motion
be constructed to determine which behavior or combinatimemmand. The weight rules combine elemental behaviors, not
of behaviors must be active at any given time. It is at thikirough fixed-priority arbitration, but rather through a general-
point that most strategies diverge in the type of process usedtion of dynamic gains that are determined based on consider-
for conflict resolution. Some of the earlier strategies, e.gation of the current status of the robot. The weight rules continu-
[20], are based on Brooks' subsumption architecture [2blsly update the behavior weighting factors during robot motion
using a switching type of behavior arbitration. This methobdased on the prevailing conditions.

VII. | NTEGRATION OF MULTIPLE BEHAVIORS
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traverse-terrain behavior

A. Rules for Behavior Weights , vt ot
rules

The weighting factorg®, ¢, ands® represent the strengths - ! W X
by which the traverse-terrain, avoid-obstacle and seek-goal rec-|__¥eight rules —'| defuzz,
ommendations are taken into account to compute the final mo-

. . id- i g
tion commands andw. These weights are represented by the eidobsiaclebehavior £ —
. - . . : 2 Y. O ol
three linguistic fuzzy setsLoW, NOMINAL, HIGH}. Two sets of navigation rules g S control
. h av
weight rules for two behaviors are now presented. weight rules —>| defuzz. system
Q
o

The traverse-terrain weight rules are as follows.
1) IF 74 iS LOW, THEN £* iS HIGH. seek-goal bebavior s oS
. p . . . 3
2) IF 74 iS MEDIUM, THEN #* iS NOMINAL . navigation rules o
3) IF 74 iS HIGH, THEN " iS LOW. weight rules —>| defuzz.
The avoid-obstacle weight rules are as follows.

1) IF dy is VERY-CLOSE, THENa" iS HIGH; Fig. 4. Behavior integration method.
2) IF dy IS CLOSE, THENa™ iS NOMINAL ;
3) IF dy iS DISTANT, THEN a* iS LOW;

i ) . In the above equations;,, and A, are the peak membership
where s denotes théront sector i.e., the terrain sector facing,5,e and the area under the truncated membership function for

the current robot hltae}ding. FLnaIIy, the seekl-goal Weif?ﬁl‘:s the velocity fuzzy sets, while, and B, are the corresponding
_set {ONOMINAL at a tlr_nes. T ese weig trules ?Sse”“a y ac{7alues for the turn rate fuzzy sets. Note that in (3) and (4), the
just the traverse-terrain and avoid-obstacle weights relative

th K | weiaht i o th i diti rg?ativevalues of the weighting factors are important, and not
€ seek-goal weight in response 1o the prevailing Conditiong,.; opqq)te values, i.e., if all the weights are equal, they will
Specifically, in critical conditions when the robot is facing an )
. be cancelled out in (3) and (4).
unsafe terrain segment or a nearby obstacle, the traverse—terra\rr]] certain situations. the final outout fuzzv set fohas an
or avoid-obstacle weighting factors are increased significantlgﬁ ‘ rical h bout tr? ys the riaht
to avoid the impending hazard, at the expense of deviating fr dOISf symmetrical s ?jpe. a Orl: € Izero axis, le.g., € r(;gh
the nominal path to the goal. Conversely, when the robot face@'y Z_ttum recommen ations (;"Vg amostr(]qua areas zn the
safe obstacle-free terrain, the seek-goal behavior dominates Rt direction is not recommended. In such situations, direct
drives the robot toward the goal. Observe that the weight ruld@plication of the standard Centroid defuzzification method can
for each behavior are independent of the other behaviors. FRfoduce an undesirable motion recommendation, in which the
thermore, the above weight rules are complete and exhaustivé@yot is commanded in the front direction that may cause col-
partition the entire space of possibilities. lision with a local obstacle or entry into an impassable terrain
Note that the fuzzy logic navigation and weight rules devef€gment. To overcome this problem, in these situations we apply
oped in this paper can be applied to any mobile robot, regardlé3g Center-of-Largest-Area (CLA) defuzzification method [26],
of robot characteristics such as wheel size, clearance, and sddkhich the output fuzzy set is first partitioned into two or more
These characteristics are reflected only in the definition of tislsjoint fuzzy subsets, and the subset with the largest area is then

membership functions used in the fuzzy rules. selected and defuzzified using the standard Centroid méthod
This method resolves the indeterminate situation faced by the
B. Behavior Integration Method Centroid method and selects either the right or the left direction

In our behavior-based navigation strategy, the three navigiat steers the robot away from the front local obstacle or im-
tion rule sets recommend independent motion commands Rgissable segment.

the mobile robot, in the form of truncated membership func- Finally, when the goalis located within an unsafe sector (low
tions that represent the output () fuzzy sets. The truncation traversablh-ty reg|0n), the robot motion is halted for safety rea-
levels of the output fuzzy sets are determined by the activatiSANS Py using crisp (nonfuzzy) rules to s@nda to zero. Oth-
levels of the input fuzzy sets of the rules that are fired [25]. /Grwise, when the robot reaches within a small usgr-spemﬂed dis-
each control cycle, the weight rules are used to calculate #f&'ce Of the goaly anda are forced to zero by crisp rules and
three crisp (nonfuzzy) weighting factot¥, «*, ands" using the robot comes to a halt.

the Center-of-Gravity (Centroid) defuzzification method [25].

The fuzzy recommendations from the traverse-terrain, avoid-V!!l: SUMMARY OF KEY ATTRIBUTES AND COMPARISON
obstacle, and seek-goal behaviors are then weighted by the cor- WITH EXISTING METHODS

responding crisp gaing’, a*, ands*, respectively, priorto de-  The key attributes of the proposed navigation approach are
fuzzification, as shown in Fig. 4. The final motion commandderived from the combined strengths of both fuzzy rule-based
are computed using the Centroid defuzzification method as

SUY S AS 4+ Wyt A 4 a2 AC 3|f the disjoint right and left subsets have exactly equal areas, then we choose

v = wp ps - d tp - : L (3) eitherriGHT or LEFT arbitrarily at this final stage as the “preferred” turn direc-
§ EAp +1 EAp +a EAp tion. Note that in this case, the selection of a preferred direction is essential at
SUNWE B 4+ Nt Bt 4+ q% e Be the fl_nal stage to avoid moving straight into the local obstacle or th_e |rr_1passab|e
o= rr + rp * pp (4) terrain segment. Observe that the selection of the preferred direction is deferred

svEBy + t'wEB]t7 +avsBg ) until the final stage.
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systems and behavior-based navigation architectures. These afve shall now give a broad comparison of the proposed ap-
tributes include: proach and the existing navigation methods, such as those re-

1) Linguistic Representatiohe navigation logic uses lin- viewed in Section 1. The behavior-based navigation approach

guistic terms from a common natural language. Thigroposed in this paper is fundamentally different from the ex-
feature allows the navigation logic to employ a percepsting analytical navigation methods. For performance compar-
tion-based formulation. The proposed approach has tisen, we focus on two specific aspects that are representative
ability to interpret the navigation rules expressed in @f the navigation system. First, the common theme in most ex-
natural language. This provides the capability to captuigting methods is that the terrain traversability is represented ei-
human common sense and intuitive reasoning, decisitrer as an analytical function of the terrain characteristics, or
making, and other aspects of human cognition. This as a binary quantity depending on these characteristics. The
tribute can be used to model the human driving expertiggroposed approach, however, is built on reasoning with per-
Uncertainty ManagemenT he foundation of fuzzy logic ception-based information expressed in a natural language. As
is representation of, and reasoning with, imprecise info& specific example, consider the assessment of terrain rough-
mation. Fuzzy logic provides a systematic framework faress and traversability using existing methods and the proposed
dealing with imprecise and uncertain information. Thapproach. In most existing methods, the terrain roughness is
input variables in a fuzzy conditional statement may vanypically obtained mathematically as the residual of the least-
over ranges of values without affecting the value of thequares plane fit to the terrain segment. This measure of rough-
output variable. Thus errors due to sensor noise and wess can lead to counterintuitive results for some terrains. For
sual processing are effectively handled by the navigatiémstance, given a flat smooth terrain with a few large rocks, we
system. obtain a large residual that results in high roughness and low

3) Simplicity A distinct feature of the proposed approaciraversability. On the other hand, using the proposed approach,
is its simplicity. Each behavior in the navigation systerthe terrain roughness is found from a set of intuitive linguistic
is implemented by a small number of simple fuzzy logicules given in Section IV-A.1 that are representative of human
rules with a few inputs and outputs. The knowledge bagerceptual judgment. When applied to the same terrain seg-
of each behavior is easy to comprehend, because it is cagent described above, the rules produce an intuitive evaluation
tured inlinguistic form by simple intuitive rule statementsof roughness agouGH and terrain traversability ageDIUM.

4) Extensibility The behavior-based approach to robot naGecond, in existing methods for navigation, data uncertainty
igation has a modular structure. The decoupled natugeoften dealt with through probability-based methods. These
of the behavior-based system significantly reduces thgethods are not fully capable of handling the pervasive fuzzi-
number of rules needed for robot navigation. This strugress of information present in the knowledge base of the naviga-
ture also makes it easy to add new modules that represgsih system. Imprecision in sensory measurements, and uncer-
additional behaviors to the system. This design makes thinty in data interpretation in the knowledge base, are mostly
navigation logic easily extensible. based on possibility rather than probability. Fuzzy logic-based

5) Computational EfficiencyThe fuzzy rule-based naviga-methods, such as the proposed approach, have a built-in intrinsic
tion algorithm is computationally fast and efficient. Théramework that is designed to address approximate reasoning
computations involved are evaluation of simple expresising uncertain information, where the uncertainty can be based
sions, such as (3) and (4) in Section VII-B. Furthermorgoth on possibility and probability [29].
the navigation algorithm has low computer memory re-
guirements. The high computational speed coupled with
the low memory needs of the navigation algorithm make
it a strong candidate for real-time implementation on mo- The test and evaluation of the proposed navigation strategy
bile robots. was conducted in three phases: graphical simulations, labora-

The navigation strategy proposed in this paper can be viewedy tests, and field tests. In the first phase, a software package

as the next generation of the navigation logic used on thalled the Robot Graphical Simulator was developed at JPL for
Sojourner rover that explored the Martian terrain in 1997. Theio—dimensional visualization of the robot motion using the
Sojourner rover used a behavior-based navigation method witlzzy rule-based navigation strategy [30]. The robot kinematics
a few simple linguistic rules [27]. The proposed navigatioand the on-board sensors were modeled in the software. Exten-
strategy belongs to the large family®xpert Systendefinedin  sive graphical simulations were carried out for test and evalua-
the artificial intelligence (Al) literature [28]. These systems argon in different terrain layouts, as well as for comparison with
capable of embedding the human expert's domain knowledtre Sojourner navigation system [30]. In the second phase, the
in the form of a set of linguistic rules which contain impreciseavigation strategy was implemented on an enhanced Pioneer
and uncertain terms. Since much of the information in an expedmmercial robot (see below). A typical outdoor terrain con-
system’s knowledge base is imprecise in nature, fuzzy logtsting of flat regions, sloped surfaces and large rocks was set
is used to provide a framework for uncertainty managememp in the laboratory. The rover navigation strategy was tested
[29]. This alliance of expert systems and fuzzy logic forms extensively in the indoor laboratory environment.

strong alternative to conventional analytical methods in manyIn the third phase, field tests using the Pioneer All-Terrain
applications. (AT) commercial mobile robot (rover) are conducted on rough

2

~

IX. FIELD-TEST STUDIES
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Fig. 7. Natural terrain environment.

relative to a given start configuration, by dead reckoning using
its internal wheel-encoder information. The processing power
on board the rover consists of a 333 MHz Pentium Il processor
housed in a chassis mounted at the rear of the rover. We
have chosen to use the Linux operating system, but have also
tested the system using a laptop computer running Windows.
Resident on the computer are the image processing algorithms
and the fuzzy logic computation engine used to calculate the
translational and rotational speed commands issued to control
the wheel motors. Using this mobile platform, field tests are
performed outdoors in natural terrain. Fig. 7 shows the terrain
environment with the rover start position located at the bottom
center of the image. Three field tests are conducted to evaluate
the navigation capabilities of the rover.

Fig. 6. Terrain sensor platform.

A. Field Test One

terrain in the arroyo (a dry river bed) outside JPL to test the | the first field test, the three navigation behaviors, traverse-
reasoning and decision-making capabilities provided by thgrain, avoid-obstacle, and seek-goal, are utilized by the rover
fuzzy logic behavior-based navigation strategy described {@navigate from a start position to a user-specified goal position,
Sections IV-VII. Fig. 5 shows the Pioneer rover augmenteghile traversing the safest terrain and avoiding encountered ob-
with additional on-board processing capability, eight-inpuiacles. The goal position is chosen approximately 20 meters in
image multiplexer and six video cameras. Fig. 6 shows th@ynt of the rover, measured on a straight line. Directly in-be-
physical layout of the camera platform used specifically tQyeen the start and goal positions are two regions having low
provide terrain imagery data. The six cameras are placg@fyersability. One region contains a highly sloped hill, and the
such that the lens centers are 740 mm above the ground, §€er contains a large cluster of rocks, as seen in Fig. 7. The
optical axis of each camera is tilted down b, &he stereo rqyer first begins by analyzing the traversability of the three
baseline length is set to 500 mm, and the intersecting origin 4 rtitioned 60 sectors (left, front, right) of the terrain located
all cameras is centered above the rover wheels. Each paifiipfront of it. The front and left sectors (which contain the large
cameras views a 6Qvedge of the terrain located to the frontgjoped hill) are found to have low traversability. The rover there-
right, and left of the rover. In other words, the cameras partitiqgre turns toward the right sector, which is found to be highly tra-
the terrain into three 6Ccircular sectors with a sensing radiusi/ersable, and proceeds to enter the safe region. Once in the safe
of about eight metets The traversability indices of the front, region, the rover travels toward a waypoint eight meters from the
right, and left sectors are inferred in real time from the terraigat position (measured on a straight line), while ensuring that
characteristics extracted from the camera images. The regigp@| still physically located in the highly traversable sector. After
perception range for the traverse-terrain behavior is set tQeaching the waypoint, the rover stops, turns toward the goal and
eight meters, i.e., the robot reacts to terrain characteristigSanalyzes the traversability of the new terrain ahead of it. This
up to eight meters away. The robot stops every eight metegse the front sector is found to have low traversability due to
(measured on a straight line from previous stop) at a waypofik |arge cluster of rocks located in this area. The left region is
for re-evaluation of the new encountered terrain. There &gnd to have low traversability due to the large sloped hill, and
seven sonars mounted on the rover base for obstacle detectigg right region is once again found to have high traversability.
The outputs of these sonars are grouped together to prodgf@ rover thus turns to the right again and proceeds into the
the closest obstacle distance in the front, right, and left sectafgse region. At this stage, the terrain in front of the rover is
The rover is able to determine its current location and headiqggh|y traversable and obstacle free. Therefore, the weights on
4This is a coarser resolution than the method described in Section 1V, buﬁl}e traverse-terrain and avoid-obstacle recommendations are re-
adequate for our field testing. duced automatically, and the seek-goal behavior becomes dom-
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goal

(b)

Fig. 8. (a) Rover path using fuzzy logic navigation rules. Top-left image shows rover start position and bottom-right image indicates goal rtctieagme
sequence proceeds to the right and down. (b) Sketch of test site and approximate rover path.

inant. At this point, the rover heads directly toward the goal aiwver easily gets trapped in the cluster of rocks. For the second
a straight path. Fig. 8(a) shows the path traversed by the rotest, the traverse-terrain behavior is enabled, and the rover is
from its original start position until it has autonomously reacheshown to successfully reach the goal position (Fig. 9(b)). In this
the specified goal position, using its on-board fuzzy logic natest, the front sector is found to have low traversability due to the
igation and weight rules. Fig. 8(b) shows a free-hand sketchraick cluster, and thus, the traverse-terrain behavior commands
the test site features and the approximate path traversed byttierover to circumnavigate the cluster of rocks. Fig. 9(c) shows

rover in this field test. the approximate rover paths in both cases. This test demon-
strates that the traverse-terrain behavior can effectively analyze
B. Field Test Two and incorporate the terrain information directly into the naviga-

In the second field test, the influence of the traverse-terrati'f?n logic and enhance mission success by preventing entry and

behavior on the rover navigation logic is demonstrated. In tHdrapment of the rover in the rock cluster.

setup, the goal position is chosen approximately 10 meters di-

rectly in front of the rover. In addition, a large cluster of rock&- Field Test Three

is located directly between the rover start position and the specin the third field test, the influence of surface discontinuity on
ified goal position. For the first test, the rover is commandetie fuzzy logic navigation is analyzed. In this setup, the rover
to navigate to the specified goal position while the traverse-tés-commanded to approach a goal position located four meters
rain behavior is disabled, i.e., the recommendations of the tdirectly in front of the rover. In addition, a cliff edge is also lo-
verse-terrain behavior are totally ignored by presetting the treated directly in front of the rover less than four meters away.
verse weight to zero. As the rover navigates toward the goalTie on-board navigation system first begins by analyzing the
enters into the cluster of rocks. At this point, the rover slowtsaversability data of the left, front, and right regions of the
down and creeps its way into the center of the cluster. Eventerrain located in front of the rover. The front and left sectors
ally, the rover halts when its sonars detect rock obstacles locabedh contain images of the cliff, and thus, are found to have
on all three sides (front, left, right). As shown in Fig. 9(a), théow traversability due to detection of a large surface disconti-
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Fig. 9. (a) Entrapment without traverse-terrain behavior. (b) Circumnavigation with traverse-terrain behavior. (c) Approximate rover paths.

nuity. The right sector is found to have medium traversabilitp run is declared unsuccessful when the distance between the
and therefore the rover turns right and proceeds to enter the safesignated goal position and the rover's final position exceeds
region upon which the rover motion is halted since the goal ie meter, which is about 3% of total traversal distance on
unattainable. Thus, the rover attempts to navigate toward thgerage. After analysis, we concluded that there were three
goal but successfully turns away to avoid the cliff region. Thigain causes for the unsuccessful runs. One cause was the
behavior is shown in Fig. 10(a) and in the free-hand sketch gfid-steering mechanism of the Pioneer rover, in which the
Fig. 10(b). dead reckoning used for estimating the rover location and
heading tends to give inaccurate information. This inaccuracy
is caused by wheel slippage and sinkage and can be excessive
The performance metric used for the evaluation of our fiekdr long rover traversals. The dead reckoning error was more
tests parallels the one used by JPL for the Sojourner Mars rovietticeable in the rover heading estimation, leading sometimes
[27]. This metric evaluates the probability that the rover will atto incorrect rover heading after about 20 m traversal. Another
tain the designated goal for a given set of test runs over a giveiuse was the analysis of traversability in lighting conditions
set of test scenarios. Based on this metric, we evaluated 10 difat result in excessive shadows [18]. In these cases, the
ferent test scenarios, with the rover operating on each test sgeaversability results were inaccurate and, in some situations,
nario for five independent runs. A run was declared successéllregions were considered unsafe, thus halting the rover before
when the rover’s position estimate implied that the goal was at-could attain the goal position. The last cause of unsuccessful
tained. The rover reached the goal in 80% of the runs for eagihs was sonar errors which occurred when detecting rocks
field test, except in field test three where the designated gadth sharp corners. In these cases, the sonar was unable to
was chosen to be unattainable. The quantitative results usedédfect the obstacle, due to the nature of sonar operation, and

D. Performance Metric

the evaluation of the field tests are listed as follows: the rover would head straight toward the obstacle.
1) average rover speed: 20 cm/s; Finally, as shown in the test images, the traverse-terrain be-
2) average distance traveled: 35 m; havior chooses the safest traversable region for the rover in all
3) average travel time: 3 min; test cases. The field test studies thus demonstrate the capability

4) runs attempted: five runs each of ten different scenario8f the terrain assessment and fuzzy logic navigation algorithms
5) success rate: 80%. for enabling safe traversal of the rover on a challenging terrain.
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Fig. 10. (a) Rover path with large surface discontinuity. (b) Approximate rover path.

Notice that the membership functions of the fuzzy sets usedvanting the robot from entry and entrapment in rock clusters and
the navigation system are chosen by trial-and-error based ondlieer impassable regions, and instead guide the robot to circum-

physical capabilities of the Pioneer AT rover. navigate these regions. However, it must be pointed out that the
perception range of the traverse-terrain behavior is limited to the
X. CONCLUSIONS regional terrain sensed by the on-board cameras, and does not

include the longer range global-scale terrain features. As such,

The proposed behavior-based robot navigation strategy 'p .0 200 prevent the robot from getting trapped in

ing fuzzy logic rules has major advan ver existi e
using fuzzy logic rules has major advantages over exist rAglarge cul-de-sac or box canyon. These situations, however,

analytical methods. First, the fuzzy logic rules that goverlL . pe avoided using a global map-based path planner that gen-

tcr;en rgg]oﬁartneo?ﬁg gri];'nmg:? ear'nsd i?igyt%r;degigangzblee' :& tes an optimally safe path clear of global hazards, which
mu S (;Jth ol v P ff Pt | - f".V 98, AWen passed on to the sensor-based navigation system. The
eXperience. second, the tolerance ot luzzy logic ofimprecisign, , regional traverse-terrain behavior introduced in this paper

and uncertqinty_ in sensory data i‘c’. particulquy appeali_ng f&r)mplements the local avoid-obstacle and global seek-goal be-
out_door navigation, b ecause of the mhe_rent inaccuracy In Mgy iqrg commonly used in behavior-based navigation systems.
suring and interpreting the terrain quality data, such as slo

i o . . e field test studies reported in this paper demonstrate that the
r(tJug:hnesr?, and dls(,jcolntlmtuty.tAndtrt]hltrd, theb behz:wodr-l?jas bile robot possesses intelligent decision-making capabilities
stralegy has a modular structure that can be extended Vi e brought to bear in negotiating hazardous terrain condi-
easily to incorporate new behaviors, whereas this requir

complete reformulation for analytical methods. Multiple fuzz;t;?&nS during the robot motion.

navigation behaviors are combined into a unified strategy,

together with smooth interpolation between the behaviors to

avoid abrupt and discontinuous transitions. The authors are thankful to Dr. E. Tunstel and B. Werger of
The addition of the on-board terrain sensing and traversabilL for their constructive comments and suggestions.
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