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Abstract—This paper presents a new strategy for be-
havior-based navigation of field mobile robots on challenging
terrain, using a fuzzy logic approach and a novel measure of
terrain traversability. A key feature of the proposed approach is
real-time assessment of terrain characteristics and incorporation
of this information in the robot navigation strategy. Three terrain
characteristics that strongly affect its traversability, namely,
roughness, slope, and discontinuity, are extracted from video
images obtained by on-board cameras. This traversability data
is used to infer, in real time, the terrain Fuzzy Rule-Based
Traversability Index, which succinctly quantifies the ease of
traversal of the regional terrain by the mobile robot. A new
traverse-terrain behavior is introduced that uses the regional
traversability index to guide the robot to the safest and the most
traversable terrain region. The regional traverse-terrain behavior
is complemented by two other behaviors, local avoid-obstacle and
global seek-goal. The recommendations of these three behaviors
are integrated through adjustable weighting factors to generate
the final motion command for the robot. The weighting factors
are adjusted automatically, based on the situational context of the
robot. The terrain assessment and robot navigation algorithms are
implemented on a Pioneer commercial robot and field-test studies
are conducted. These studies demonstrate that the robot possesses
intelligent decision-making capabilities that are brought to bear in
negotiating hazardous terrain conditions during the robot motion.

Index Terms—Behavior-based navigation, fuzzy logic, mobile
robots, robot navigation, rough terrain, sensor-based navigation,
traversability.

I. INTRODUCTION

H UMANS have a remarkable capability to perform a
wide variety of physical and mental tasks without any

explicit measurements or computations. Examples of everyday
tasks are parking a car, driving in city traffic, playing golf,
cooking a meal, and summarizing a story. In performing such
familiar tasks, humans useperceptionsof time, distance, speed,
shape, and other attributes of physical and mental objects [1].
Reflecting the bounded ability of the human brain to resolve
detail, perceptions are intrinsically imprecise. Perceptions are
well beyond the reach of traditional methods, which are based
on mathematical modeling and analysis. Instead, perceptions
are described by propositions drawn from a natural language,
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in which the boundaries of perceived classes are fuzzy. For
instance, a human can drive a car off-road on a rough terrain
using perceptions of the physical environment, rather than with
exact information about locations and sizes of objects therein.
The driver adjusts the speed and steering of the car based on
his subjective judgment of the surface conditions, e.g., the car
speed is decreased in off-road driving on a bumpy and rough
terrain, but is increased on a smooth and flat surface. The human
driving actions are motivated byperceptionsof the terrain
quality and obstacles, and not by explicit modeling and analysis
of the surface conditions. It is highly desirable to capture the
expertise of the human driver and to utilize this knowledge to
develop autonomous navigation strategies for mobile robots.
Fuzzy logic provides a means toward accomplishing this goal.

The theory of fuzzy logic systems is inspired by the re-
markable human capability to operate on and reason with
perception-based information [2], [3]. Rule-based fuzzy logic
provides a scientific formalism for reasoning and decision
making with uncertain and imprecise information. Fuzzy
logic provides a formal methodology for representing and
implementing the human expert’s heuristic knowledge and
perception-based actions. Using the fuzzy logic framework, the
attributes of human reasoning and decision making can be for-
mulated by a set of simple and intuitiveIF (antecedent)–THEN

(consequent)rules, coupled with easily understandable and
natural linguistic representations. The linguistic values in the
rule antecedents convey the imprecision associated with the
perceptions, while those in the rule consequents represent
the vagueness inherent in the reasoning processes. In other
words, fuzzy rule-based systems generate actions based on
perceptions. The operational strategies of the human expert
driver can be transferred via fuzzy logic to the robot navigation
strategy in the form of a set of simple conditional statements
composed of linguistic variables. These linguistic variables are
defined by fuzzy sets in accordance with user-defined mem-
bership functions. The main advantages of a fuzzy navigation
strategy lie in the ability to extract heuristic rules from human
experience, and to obviate the need for an analytical model of
the process.

The natural appeal of fuzzy logic to robot navigation has mo-
tivated considerable research in this area in recent years (see
[4]). Most of this research, however, has been focused onin-
doormobile robots that operate in highly structured or otherwise
man-madeenvironments. These environments typically consist
of smooth horizontal floors, walls, and known man-made obsta-
cles. In recent years, there has been a growing interest in the nav-
igation of field mobile robots that operate on unknown and un-
chartednatural terrain. There are several application domains,
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both terrestrial and in space, which have strongly motivated this
research. For instance, NASA has planned an ambitious set of
missions to Mars that will carry mobile robots (rovers) to ex-
plore the Martian surface and to carry outin situ science mis-
sions. Similarly, the US Department of Defense (DOD) is spon-
soring several research projects that involve autonomous mo-
bile robots operating on rough natural terrain. However, despite
widespread applications of outdoor navigation, there are few
existing methods for field robot navigation that consider the
terrain characteristics [5]–[15]. In the existing methods, terrain
traversability is often defined as an analytical function of the ter-
rain slope and roughness. The slope is determined by finding the
least-squares fit of a geometric plane covering the region, while
the roughness is calculated as the residual of the best-plane fit.
Once the traversability of each region is found, a traversable
path for the robot is then constructed.

This paper develops a new approach for robot navigation on
challenging terrain using a perception-based linguistic frame-
work. Robot navigation is accomplished using fuzzy logic rule
statements, as an alternative to conventional analytical methods.
The premise of the proposed approach is to embed the human
expert’s heuristic knowledge into the mobile robot navigation
strategy using fuzzy logic. The proposed approach is highly
robust in coping with the uncertainty and imprecision that are
inherent in sensing and perception of natural environments.
The robot navigation strategy developed here is comprised of
three independent behaviors, regional traverse-terrain, local
avoid-obstacle, and global seek-goal, that recommend motion
commands for the robot. The recommendations of these be-
haviors are then integrated with adjustable weighting factors to
yield an autonomous navigation strategy for the mobile robot
that requires noa priori information about the environment.

The paper is organized as follows. Some of the existing nav-
igation methods are reviewed in Section II. The robot naviga-
tion architecture and elemental behaviors based on terrain, ob-
stacle, and goal information are presented in Sections III–VI.
The integration of these behaviors into a unified robot naviga-
tion strategy is discussed in Section VII. Section VIII summa-
rizes the key attributes of the proposed approach and compares it
with existing methods. Section IX describes the implementation
of the navigation strategy on a commercial mobile robot, and
presents field-test studies that demonstrate the intelligent nav-
igation capability of the robot on challenging terrain. Finally,
Section X gives a brief conclusion.

II. REVIEW OF EXISTING NAVIGATION METHODS

In this section, we review some of the existing methods for
robot navigation on natural terrain. Lacroixet al. [5] execute
the navigation behavior based on terrain quality. The terrain is
classified in four distinct categories: flat, uneven, obstacle, and
unknown. Based on three–dimensional image data, the terrain is
segmented into cells, and each cell is labeled based on different
terrain characteristics such as point density, altitude, and mean
vector. A Bayesian classification methodology is employed, in
which an estimate of the probability for each label is determined
from prior learning, based on prototypes classified by humans.

Simmonset al. [6], Goldberget al. [7], and Singhet al. [8]
compute an analytical traversability measure for the terrain,
based on stereo range data. Roll, pitch, and roughness of
terrain cells are estimated from the viewable terrain image.
Roll and pitch are calculated by using a least-squares method
to fit a plane to the range data, and roughness is computed as
the residual of the fit. These measures are normalized in the
range [0,1] and a goodness value is determined, based on the
minimum value of the three parameters. A certainty factor is
also calculated as a function of the number and distribution of
range points within a cell. A path planner then evaluates the
traversability along predetermined candidate paths by taking
a weighted combination of the goodness and certainty values.
Votes for each path are then sent to an arbiter that determines
the best path to traverse.

Langeret al. [9] focus on the development of a navigation
system that generates recommendations for vehicle steering,
based on the distribution of untraversable terrain regions.
Traversability is determined by combining elevation and
slope information to classify cells as obstacles. Those cells
having slope values above a given threshold are classified as
untraversable. Cells without enough range information are
not classified, allowing the rover to approach these areas and
retrieve additional information if necessary. Based on the
location of obstacle cells, a steering command is generated by
combining votes from multiple behaviors and deciding on the
best command. Votes are given continuous values between1
and 1 based on the height and position of obstacle points
located within the image.

Finally, Gennery [10] uses estimates for slope and rough-
ness at equally spaced grid points to compute a cost function
for traversability. Slope is computed by fitting a weighted least-
squares plane to a height map, and using the residual of the fit to
estimate roughness. An analytical function representing the cost
of driving over each grid point is then calculated, based on the
probability that the slope and roughness are less than maximum
threshold values. This probability of traversability is approxi-
mated based on a Gaussian error distribution.

III. STRUCTURE OFBEHAVIOR-BASED NAVIGATION STRATEGY

In behavior-based robot navigation systems, goals are
achieved by subdividing the overall task into small indepen-
dent behaviors that focus on execution of specific subtasks.
For example, a behavior can be constructed which focuses
on traversing from a start to a goal location, while another
behavior focuses on obstacle avoidance. The basic building
block of the proposed navigation strategy is abehavior. In our
strategy, each behavior is composed of a set of fuzzy logic rule
statements aimed at achieving a given desired objective. There
are two types of rules for each behavior,navigationrules and
weightrules. The navigation rules consist of a set of fuzzy logic
rules for robot translation and rotation of the form

(1)

where thecondition is composed of fuzzy input variables and
fuzzy connectives (AND, OR, NOT) and theaction is a fuzzy
output variable (see Sections IV–VI). Equation (1) represents
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the general form of a typical rule in a set of naturallinguistic
rules. This is analogous to the actions taken by an expert human
driver based on the prevailing conditions, e.g., from a safety
perspective,IF road is icy, THEN speedis slow. The output of
each behavior is a recommendation over all possible motion
commands from the perspective of achieving that behavior’s
objective. Multiple behaviors can be active simultaneously in
the navigation strategy, each aimed at achieving one specific
subgoal. Integration of multiple behaviors is implemented by
combining the outputs (recommendations) of all active behav-
iors using their weight rules. For each behavior, the weight rules
consist of a set of fuzzy logic rules for weight assignment of the
general form

(2)

where is a logical statement describing a physicalsituation,
and represents a fuzzy expression of theweighting factor
with which that behavior’s recommendation is considered in
the prevailing situation (see Section VII). For instance, for the
safety behavior of the human driver,IF sunlight is low, THEN

safety weightis high. For each behavior, the recommendation of
navigation rules is scaled by the gain obtained from the weight
rules. The weighted combination of all the behaviors’ recom-
mendations is then defuzzified and issued as a command to the
mobile robot wheel actuators for execution. Equations (1) and
(2) represent a framework for embedding the human expert’s
knowledge into the robot navigation strategy.

The robot navigation strategy proposed in this paper is com-
prised of three simple behaviors. These behaviors operate at
three different ranges, with the seek-goal behavior atglobal, the
traverse-terrain behavior atregionaland the avoid-obstacle be-
havior atlocal ranges. Note that the new regional traverse-ter-
rain behavior introduced in this paper complements the local
avoid-obstacle and global seek-goal behaviors commonly used
in behavior-based navigation systems. We shall now describe
the three elemental behaviors.

IV. REGIONAL TRAVERSE-TERRAIN BEHAVIOR

The problem addressed in this section is to navigate a mobile
robot to the safest and most traversable region of a natural ter-
rain. The section is comprised of two parts. In the first part, a
perception-based traversability index is inferred for each terrain
region, based on real-time assessment of the terrain quality ex-
tracted from on-board sensory data. In the second part, a new
technique for terrain-based navigation is developed, in which
the terrain traversability index is used directly in the robot navi-
gation logic so as to guide the robot toward the most traversable
terrain. The terrain assessment and robot navigation rules rep-
resent, respectively, the visual judgment and driving actions of
a skillful human driver operating the vehicle.

A. Real-Time Terrain Assessment

In recent papers [16], [17], the concept ofFuzzy Rule-Based
Traversability Indexis introduced as a simple measure for quan-
tifying the suitability of a natural terrain region for traversal
by a mobile robot. Three important attributes that characterize

the difficulty of a terrain region for traversal are the rough-
ness, slope, and discontinuity of that region. A subsequent paper
[18] documents the process for extracting these characteristics
from imagery data obtained from cameras mounted on the robot.
These characteristics are represented in a fuzzy logic frame-
work, using perception-based linguistic fuzzy sets, and are used
to infer the Fuzzy Rule-Based Traversability Index.

1) Terrain Characterization:Unlike existing methods that
compute the terrain roughness analytically as the residual of the
best-plane fit, the measure of terrain roughness proposed here
is based on the sizes and concentrations of rocks in a viewable
image scene using simple linguistic rules [18]. The proposed ap-
proach is perception based, and is analogous to the human ob-
server’s visual judgment of terrain roughness. An object in the
terrain image is classified as a rock if its characteristics differ
from the ground surface1 . The rock-detection algorithm identi-
fies rock objects located on the ground plane, and determines the
sizes and concentrations of rocks contained within the image.
This information is then converted into the {SMALL, LARGE}
fuzzy sets for rock size, and {FEW, MANY} fuzzy sets for rock
concentration. The terrain roughness is represented by the three
linguistic fuzzy sets {SMOOTH, ROUGH, ROCKY}, and is derived
directly from the rock size and concentration parameters of the
associated image scene using the following intuitive rule set:

1) IF is SMALL AND is FEW, THEN is SMOOTH;
2) IF is SMALL AND is MANY, THEN is ROUGH;
3) IF is LARGE AND is FEW, THEN is ROUGH;
4) IF is LARGE AND is MANY, THEN is ROCKY;

where is the rock size, represents the rock concentration,
and denotes the corresponding terrain roughness. The
membership functions for the three fuzzy roughness classes
are shown in Fig. 1(a). Note that multiple rules can be active
at the same time. To further ensure that this approach gives a
perceptual, linguistic definition of terrain roughness as used by
a human observer, an optimization technique can be applied
that adjusts the membership function parameters based on the
perceptual performance of a human expert [19]. This process is
accomplished by having human experts classify the roughness
characterizing various terrain image scenes by visual examina-
tion. In this way, the human expert acts as a supervisor to teach
the fuzzy terrain classifier to mimic human visual perception.

We define slope as the inclination of the ground plane with re-
spect to the robot’s current angular tilt. To determine this lateral
slope parameter, an approach [18] is used to obtain elevation in-
formation from two uncalibrated cameras. The process involves
training an artificial neural network to learn the relationship be-
tween slope and coordinates of correlated points within a terrain
image. The network is trained on typical imagery data repre-
senting different positive and negative sloped surfaces. Points
located on the ground plane at a position furthest from the robot
are extracted from multiple images and fed as inputs into the
network. The network is then trained by finding a set of weights
that produce the desired slope output, given the set of data input
values. Once the learning process is completed, it is utilized to
extract the slope during run time. The output of the network

1The termrock is used here in the generic sense to imply both positive obsta-
cles (rocks) and negative obstacles (ditches).
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(a)

(b)

(c)

(d)

Fig. 1. (a) Membership functions for terrain roughness. (b) Membership
functions for terrain slope. (c) Membership functions for terrain discontinuity.
(d) Membership functions for traversability index.

gives the terrain slope value, whose magnitude is then converted
into the three linguistic fuzzy sets {FLAT, SLOPED, STEEP}, with
the membership functions shown in Fig. 1(b). The process of re-
fining the membership functions by embedding human knowl-
edge can also be applied in this instance.

An exception to the slope determination algorithm involves
detection of terrain features such as cliffs, valleys, and ravines.
For such features, the ground plane will have zero slope, and yet
the terrain directly adjacent to the ground surface will have ap-
proximately a 90 incline. For these cases, we determine the
existence of a cliff/valley/ravine based on the separation dis-
tance between the two adjacent regions. We characterize this
separation distance by the two linguistic fuzzy sets {SMALL,

LARGE}, with the membership functions shown in Fig. 1(c).
Note that the definitions of the above classes of terrain char-

acteristics depend on the wheel design and traction mecha-
nism of the robot, which determine its hill climbing and rock
climbing capabilities. This dependence is reflected in the se-
lection of the membership functions used to represent the

roughness, slope, and discontinuity characteristics as shown in
Figs. 1(a)–1(c). For instance, robots with larger wheels can
climb bigger rocks, and this fact can be reflected in definition
of the membership functions forSMALL andLARGE fuzzy sets
for rock size.

2) Terrain Traversability Index:The Fuzzy Rule-Based
Traversability Index combines the three terrain quality param-
eters into a single indicator of ease of traversal of the terrain
by the mobile robot. The Traversability Indexis represented
by the three linguistic fuzzy sets {LOW, MEDIUM, HIGH}, with
the membership functions shown in Fig. 1(d). These indices
correspond to terrains that are unsafe, risky, and safe for
traversal, respectively. The Traversability Indexis defined in
terms of the terrain slope, the terrain roughness, and the
terrain discontinuity by a set of simple intuitive fuzzy logic
relations as follows:

1) IF is FLAT AND is SMOOTH AND is SMALL, THEN is
HIGH.

2) IF is FLAT AND is ROUGH AND is SMALL, THEN is
MEDIUM.

3) IF is SLOPED AND is SMOOTH AND is SMALL, THEN

is MEDIUM.
4) IF is SLOPED AND is ROUGH AND is SMALL, THEN

is LOW.
5) IF is STEEP OR is ROCKY OR is LARGE, THEN is LOW.

The last rule states that a terrain region with aSTEEP slope,
or a ROCKY roughness, or aLARGE discontinuity is unsafe for
traversal, regardless of the values of the other two parameters.
Note that multiple rules can be active at the same time and the
fuzzy classes have overlaps; hence, the Traversability Index can
have, for instance, both 0.5MEDIUM and 0.5HIGH membership
values. This approach lends itself to a perception-based, lin-
guistic definition of terrain traversability as used by a human ob-
server, in contrast to a mathematical definition of traversability
(as an analytical function of slope and roughness) used in ex-
isting methods. The multivalued nature of the proposed fuzzy
logic representation of traversability offers significant robust-
ness and tolerance to the large amount of uncertainty and im-
precision inherent in sensing and perception of a natural terrain.
This robustness is due to the fact that the output of a rule-based
system does not depend on theexactvalues of the input vari-
ables. This allows each input variable to change over a range of
values without affecting the system output.

B. Terrain-Based Navigation

The motion control variables of the mobile robot are the trans-
lational speed and the rotational speed (or turn rate), where

, , and , and are
the position coordinates of the robot center and the robot orien-
tation in a user-defined coordinate frame of reference, respec-
tively. The robot speed is represented by the three linguistic
fuzzy sets {STOP, SLOW, FAST}, with the membership functions
shown in Fig. 2(a). Similarly, the robot turn rateis represented
by the seven linguistic fuzzy sets {LARGE-NEG, MEDIUM-NEG,

SMALL-NEG, ZERO, SMALL-POS, MEDIUM-POS, LARGE-POS}, with
the membership functions shown in Fig. 2(b), wherePOSitive
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(a)

(b)

Fig. 2. (a) Membership functions for speed. (b) Membership functions for turn rate.

Fig. 3. Decomposition of terrain into seven sectors.

andNEGative turn the robot to right and left directions, respec-
tively. These turn rates are used to change the robot heading and
place the robot in an appropriate terrain sector.

In this section, the Traversability Index is used to develop
simple rules for determination of the robot turn rate and speed
while moving on a natural terrain. It is assumed that the robot
can only move in the forward direction (i.e., reverse motion is
not allowed). As shown in Fig. 3, the terrain available for robot
traversal is divided up into a rectangular front sector and six
30 circular side sectors with radius, where is the user-de-
fined regional perception rangeof the robot, i.e., the distance
at which we wish the robot to react to the regional terrain char-
acteristics2 . These sectors are labeled from right to left as R
(right), RF (right-front), FR (front-right), F (front), FL (front-

2Note that the regional perception range is less than or equal to the sensing
envelope of the on-board terrain sensors. The value ofr determines the location
of the regional terrain boundary orhorizon linein [18].

left), LF (left-front), and L (left), and have the central angular
values of 75 , 45 , 15 , 0 , 15 , 45 , and 75 rel-
ative to the front direction, respectively. These seven sectors
correspond to the seven classes of turn rate discussed earlier.
In other words,LARGE-POSturns the robot to face theRIGHT

sector,MEDIUM-POS to the RIGHT-FRONT sector,SMALL-POS to
theFRONT-RIGHTsector,ZEROto theFRONTsector, and likewise
for negative turn rates. The Traversability Indices for the above
seven regions, , , , , , , and , are inferred from
the perceived values of the terrain slope, roughness, and discon-
tinuity of each region obtained by the vision system on board
the robot.

We shall now discuss the fuzzy logic rules for deter-
mination of the robot turn rate and speed, based on the
terrain-traversability data. Note that if higher resolution is
needed, the terrain in front of the robot can be decomposed into
a larger number of smaller sectors, and similar navigation rules
can be developed.

1) Turn Rules: We develop a two-step procedure for deter-
mining the turn rate. In the first step, we find themosttraversable
sector in the right and left regionsindependently, with prefer-
ence (bias) toward the front direction. In the second step, we de-
termine the best sector among the preferred-right, preferred-left,
and front sectors.

The turn rules for the first step are summarized in Table I(a)
(for the right sector) to find the preferred-right (PR) sector with
Fuzzy Traversability Index , where LP isLARGE-POS, MP is
MEDIUM-POS and SP isSMALL-POS. For instance, the (1, 1) ele-
ment of the top layer in Table I(a) can be written out asIF is
LOW AND is HIGH AND is HIGH, THEN is MEDIUM-POS,
and the entire bottom layer can be written out asIF is HIGH,

THEN is SMALL-POS. Observe that the rules have a tendency
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TABLE I
(a) TURN RULES TO SELECT PREFERRED-RIGHT (PR) SECTOR

(b) TURN RULES FOR THETRAVERSE-TERRAIN BEHAVIOR

(a)

(b)

(bias) to select the direction that is closest to the front direc-
tion, so that the robot does not make unnecessary rotations. A
similar rule set can be produced for the left sectors by replacing

and P by and N. The outputs of the first step are the pre-
ferred-positive (PP) and preferred-negative (PN) turn rates as-
sociated with the preferred-right and preferred-left sectors. The
turn rules for the second step are shown in Table I(b), where
stands forZERO. These rules compare the preferred-right (PR),
preferred-left (PL), and front (F) sectors, and select the most
traversable sector among them. Observe that a turn maneuver
is not initiated when either the front sector is the most travers-
able, or the preferred-right and preferred-left sectors have the
same traversability indices as the front sector. Notice that in
Table I(b), when the robot needs to turn, but the PR and PL
sectors have thesametraversability indices, then the recom-
mended turn rate isNOP (negative-or-positive), where NOP

PN PP . The membership function ofNOP is the union of

the membership functions of PN and PP. For instance,IF is
LOW AND is HIGH AND is HIGH, THEN is NOP. The ad-
vantage of usingNOP over choosing either negative or positive
as the recommended turn rate is that it does not force the robot to
choose between left and right directions arbitrarily at this stage,
keeping both options equally open for selection later. The final
selection will be made whenNOPis integrated with turn recom-
mendations from other behaviors.

2) Move Rules:The translational speed of the robot is deter-
mined by the quality of the terrain sector facing the robot, that
is, . This determination is formulated as a set of three simple
fuzzy logic rules for speed of traverse as follows.

1) IF is LOW, THEN is STOP.
2) IF is MEDIUM, THEN is SLOW.
3) IF is HIGH, THEN is FAST.

Note that when the robot turns to face a more traversable terrain
sector, the front traversability index is updated automatically
based on the new terrain quality information.

V. LOCAL AVOID-OBSTACLE BEHAVIOR

In a manner similar to the traverse-terrain behavior, it is
assumed that there are seven groups of proximity sensors
mounted on the robot facing the seven sectors of right,
right-front, front-right, front, front-left, left-front and left.
These sensors report the distances between the robot and
the closest obstacle in each of the seven sectors, namely

. Each obstacle distance is
represented by the three linguistic fuzzy sets {VERY-CLOSE,

CLOSE, DISTANT}. The collision avoidance navigation rules are
discussed below.

A. Turn Rules

The fuzzy logic turn rule sets are similar to those described in
Section IV-B.1, with replaced by and (low, medium, high)
replaced by (very-close, close, distant) in Table I(a)–I(b). Note
that when is DISTANT, i.e., the front sector of the robot is clear
of obstacles, the robot will not collide with any obstacles and no
corrective action needs to be taken. Again, as in Section IV-B.1,
when preferred-right and preferred-left sectors are equally ob-
stacle free and better than the front sector, this behavior will
recommendNOP (negative-or-positive) for the turn rate.

B. Move Rules

The robot speed is based on the closest obstacle distance in
the front sector facing the robot, that is,. The speed rules are
as follows.

1) IF is VERY-CLOSE, THEN is STOP.
2) IF is CLOSE, THEN is SLOW.
3) IF is DISTANT, THEN is FAST.

Again, note that when the robot turns to face a more ob-
stacle-free sector, the front obstacle distanceis updated
automatically.

VI. GLOBAL SEEK-GOAL BEHAVIOR

In this section, we present a set of fuzzy logic navigation rules
that drive the robot from a known initial position to a user-spec-



314 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 3, JUNE 2002

ified goal position, regardless of the terrain quality or obstacle
presence. In these rules, the robot initially performs an in-place
rotation toward the goal to nullify the heading error. Once the
robot is aligned with the goal direction, it then proceeds toward
the goal position on a straight path. A similar rule set can also
be formulated for robots that are unable to perform in-place ro-
tation. For this class of robots, the robot is commanded to move
slowly toward the goal while turning simultaneously to face the
goal position.

A. Turn Rules

The rules for the robot rotational motion are as follows:

1) IF is GOAL FAR-LEFT, THEN is LARGE-NEG;
2) IF is GOAL MEDIUM-LEFT, THEN is MEDIUM-NEG;
3) IF is GOAL LEFT, THEN is SMALL-NEG;
4) IF is GOAL HEAD-ON, THEN is ZERO;
5) IF is GOAL RIGHT, THEN is SMALL-POS;
6) IF is GOAL MEDIUM-RIGHT, THEN is MEDIUM-POS;
7) IF is GOAL FAR-RIGHT, THEN is LARGE-POS;

where is the heading error (goal bearing) and is represented by
the seven linguistic fuzzy sets {GOAL FAR-LEFT, GOAL MEDIUM-

LEFT, GOAL LEFT, GOAL HEAD-ON, GOAL RIGHT, GOAL MEDIUM-

RIGHT, GOAL FAR-RIGHT}.

B. Move Rules

The following rules are used for the robot translational
motion:

1) IF is VERY-NEAR OR is NOT GOAL HEAD-ON, THEN

is STOP;
2) IF is NEAR AND is GOAL HEAD-ON, THEN is SLOW;

where is the position error (goal distance) and is repre-
sented by the two linguistic fuzzy sets {VERY-NEAR, NEAR}
when the robot is close to the goal. The above rules slow
down the robot motion as it gets close to the goal. The first
rule also keeps the robot stationary while it is correcting its
heading. Observe that when the robot is far from the goal,
its speed is dictated by the local obstacle distance and the re-
gional terrain quality, and is generated by the move rules in
the local avoid-obstacle and regional traverse-terrain behav-
iors. In this case, the seek-goal behavior does not contribute
to the robot speed.

VII. I NTEGRATION OFMULTIPLE BEHAVIORS

The regional traverse-terrain behavior, the local avoid-ob-
stacle behavior and the global seek-goal behavior described
in Sections IV–VI compete for control of the mobile robot by
issuing independentmotion recommendations for thesame
vehicle. These different recommendations must therefore be
reconciled and fused in order to generate the final motion
command. To resolve conflict among behaviors, a strategy must
be constructed to determine which behavior or combination
of behaviors must be active at any given time. It is at this
point that most strategies diverge in the type of process used
for conflict resolution. Some of the earlier strategies, e.g.,
[20], are based on Brooks’ subsumption architecture [21]
using a switching type of behavior arbitration. This method

employs a prioritization scheme wherein the recommendation
of only one behavior with the highest priority is selected,
while recommendations of the remaining competing behaviors
with lower priorities are ignored. Unfortunately, this type of
approach leads to inefficient performance in certain situations.
For example, a robot encounters an obstacle situated directly
in front of its current path and the avoid-obstacle behavior
is selected. The robot then decides to turn left to avoid the
obstacle. However, the goal is located to the right, but since
the avoid-obstacle behavior is not privy to this information,
its decision hampers the progress of the seek-goal behavior.
Other techniques, e.g., [22], focus on combining the output
of each behavior using predetermined weighting factors. This
leads to direct conflicts in execution when multiple behaviors
give contrary commands. For example, the avoid-obstacle
behavior commands the robot to turn left to avoid collision with
a forward obstacle, while the seek-goal behavior commands
the robot to turn right in the direction of the goal. Combining
each behavior’s output can result in a command directing the
robot to move forward, which will cause the robot to eventually
collide with the obstacle. To deal with these limitations, other
strategies have employed fusion methodologies in which each
behavior is allowed to affect the final output based on the
situational context [4], [23], [24]. Saffiotti [4] focuses on using
the process of context-dependent blending (CDB) in which the
current situation is used to decide between behaviors using
fuzzy logic. For example, the outputs from the avoid-obstacle
and seek-goal behaviors are combined with equal weights
until a situation occurs in which priority must be given to one
behavior. Such a situation will occur when an obstacle is very
close and, to avoid immediate collision, obstacle avoidance
becomes the main concern. Independently, Tunstelet al. [23]
develop an approach similar to context-dependent blending, in
which an adaptive hierarchy of multiple fuzzy behaviors are
combined using the concept of degree-of-applicability (DOA).
In this case, certain behaviors are allowed to influence the
overall behavior as required by the current situation and goal.
Rosenblatt [24] develops the distributed architecture for mobile
navigation (DAMN), in which a centralized arbitration of votes
provided by independent behaviors combines into a unified
output. This approach differs from the others in that behaviors
can vote either for or against certain vehicle actions, rather than
having to decide on one specific output. The DAMN arbiter
selects the output command associated with the most votes.

The behavior fusion methodology we employ in this sec-
tion is motivated by the approaches used by Saffioti [4] and
Tunstel et al. [23]. Independent behaviors are executed in a
concurrent fashion, and depending on the situational context,
the outputs are blended together. Each behavior is assigned a
weighting factor, and these factors are adjusted dynamically ac-
cording to the weight rules. The weighting factors determine
the degree of influence of each behavior on the final motion
command. The weight rules combine elemental behaviors, not
through fixed-priority arbitration, but rather through a general-
ization of dynamic gains that are determined based on consider-
ation of the current status of the robot. The weight rules continu-
ously update the behavior weighting factors during robot motion
based on the prevailing conditions.
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A. Rules for Behavior Weights

The weighting factors , , and represent the strengths
by which the traverse-terrain, avoid-obstacle and seek-goal rec-
ommendations are taken into account to compute the final mo-
tion commands and . These weights are represented by the
three linguistic fuzzy sets {LOW, NOMINAL, HIGH}. Two sets of
weight rules for two behaviors are now presented.

The traverse-terrain weight rules are as follows.

1) IF is LOW, THEN is HIGH.
2) IF is MEDIUM, THEN is NOMINAL .
3) IF is HIGH, THEN is LOW.

The avoid-obstacle weight rules are as follows.

1) IF is VERY-CLOSE, THEN is HIGH;
2) IF is CLOSE, THEN is NOMINAL ;
3) IF is DISTANT, THEN is LOW;

where denotes thefront sector, i.e., the terrain sector facing
the current robot heading. Finally, the seek-goal weightis
set toNOMINAL at all times. These weight rules essentially ad-
just the traverse-terrain and avoid-obstacle weights relative to
the seek-goal weight in response to the prevailing conditions.
Specifically, in critical conditions when the robot is facing an
unsafe terrain segment or a nearby obstacle, the traverse-terrain
or avoid-obstacle weighting factors are increased significantly
to avoid the impending hazard, at the expense of deviating from
the nominal path to the goal. Conversely, when the robot faces a
safe obstacle-free terrain, the seek-goal behavior dominates and
drives the robot toward the goal. Observe that the weight rules
for each behavior are independent of the other behaviors. Fur-
thermore, the above weight rules are complete and exhaustively
partition the entire space of possibilities.

Note that the fuzzy logic navigation and weight rules devel-
oped in this paper can be applied to any mobile robot, regardless
of robot characteristics such as wheel size, clearance, and so on.
These characteristics are reflected only in the definition of the
membership functions used in the fuzzy rules.

B. Behavior Integration Method

In our behavior-based navigation strategy, the three naviga-
tion rule sets recommend independent motion commands for
the mobile robot, in the form of truncated membership func-
tions that represent the output ( ) fuzzy sets. The truncation
levels of the output fuzzy sets are determined by the activation
levels of the input fuzzy sets of the rules that are fired [25]. At
each control cycle, the weight rules are used to calculate the
three crisp (nonfuzzy) weighting factors, , and using
the Center-of-Gravity (Centroid) defuzzification method [25].
The fuzzy recommendations from the traverse-terrain, avoid-
obstacle, and seek-goal behaviors are then weighted by the cor-
responding crisp gains , , and , respectively, prior to de-
fuzzification, as shown in Fig. 4. The final motion commands
are computed using the Centroid defuzzification method as

(3)

(4)

Fig. 4. Behavior integration method.

In the above equations, and are the peak membership
value and the area under the truncated membership function for
the velocity fuzzy sets, while and are the corresponding
values for the turn rate fuzzy sets. Note that in (3) and (4), the
relative values of the weighting factors are important, and not
their absolute values, i.e., if all the weights are equal, they will
be cancelled out in (3) and (4).

In certain situations, the final output fuzzy set forhas an
almost symmetrical shape about the zero axis, e.g., the right
and left turn recommendations have almost equal areas and the
front direction is not recommended. In such situations, direct
application of the standard Centroid defuzzification method can
produce an undesirable motion recommendation, in which the
robot is commanded in the front direction that may cause col-
lision with a local obstacle or entry into an impassable terrain
segment. To overcome this problem, in these situations we apply
the Center-of-Largest-Area (CLA) defuzzification method [26],
in which the output fuzzy set is first partitioned into two or more
disjoint fuzzy subsets, and the subset with the largest area is then
selected and defuzzified using the standard Centroid method3 .
This method resolves the indeterminate situation faced by the
Centroid method and selects either the right or the left direction
that steers the robot away from the front local obstacle or im-
passable segment.

Finally, when the goal is located within an unsafe sector (low
traversability region), the robot motion is halted for safety rea-
sons by using crisp (nonfuzzy) rules to setand to zero. Oth-
erwise, when the robot reaches within a small user-specified dis-
tance of the goal, and are forced to zero by crisp rules and
the robot comes to a halt.

VIII. SUMMARY OF KEY ATTRIBUTES AND COMPARISON

WITH EXISTING METHODS

The key attributes of the proposed navigation approach are
derived from the combined strengths of both fuzzy rule-based

3If the disjoint right and left subsets have exactly equal areas, then we choose
eitherRIGHT or LEFT arbitrarily at this final stage as the “preferred” turn direc-
tion. Note that in this case, the selection of a preferred direction is essential at
the final stage to avoid moving straight into the local obstacle or the impassable
terrain segment. Observe that the selection of the preferred direction is deferred
until the final stage.



316 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 3, JUNE 2002

systems and behavior-based navigation architectures. These at-
tributes include:

1) Linguistic Representation: The navigation logic uses lin-
guistic terms from a common natural language. This
feature allows the navigation logic to employ a percep-
tion-based formulation. The proposed approach has the
ability to interpret the navigation rules expressed in a
natural language. This provides the capability to capture
human common sense and intuitive reasoning, decision
making, and other aspects of human cognition. This at-
tribute can be used to model the human driving expertise.

2) Uncertainty Management: The foundation of fuzzy logic
is representation of, and reasoning with, imprecise infor-
mation. Fuzzy logic provides a systematic framework for
dealing with imprecise and uncertain information. The
input variables in a fuzzy conditional statement may vary
over ranges of values without affecting the value of the
output variable. Thus errors due to sensor noise and vi-
sual processing are effectively handled by the navigation
system.

3) Simplicity: A distinct feature of the proposed approach
is its simplicity. Each behavior in the navigation system
is implemented by a small number of simple fuzzy logic
rules with a few inputs and outputs. The knowledge base
of each behavior is easy to comprehend, because it is cap-
tured in linguistic form by simple intuitive rule statements.

4) Extensibility: The behavior-based approach to robot nav-
igation has a modular structure. The decoupled nature
of the behavior-based system significantly reduces the
number of rules needed for robot navigation. This struc-
ture also makes it easy to add new modules that represent
additional behaviors to the system. This design makes the
navigation logic easily extensible.

5) Computational Efficiency: The fuzzy rule-based naviga-
tion algorithm is computationally fast and efficient. The
computations involved are evaluation of simple expres-
sions, such as (3) and (4) in Section VII-B. Furthermore,
the navigation algorithm has low computer memory re-
quirements. The high computational speed coupled with
the low memory needs of the navigation algorithm make
it a strong candidate for real-time implementation on mo-
bile robots.

The navigation strategy proposed in this paper can be viewed
as the next generation of the navigation logic used on the
Sojourner rover that explored the Martian terrain in 1997. The
Sojourner rover used a behavior-based navigation method with
a few simple linguistic rules [27]. The proposed navigation
strategy belongs to the large family ofExpert Systemsdefined in
the artificial intelligence (AI) literature [28]. These systems are
capable of embedding the human expert’s domain knowledge
in the form of a set of linguistic rules which contain imprecise
and uncertain terms. Since much of the information in an expert
system’s knowledge base is imprecise in nature, fuzzy logic
is used to provide a framework for uncertainty management
[29]. This alliance of expert systems and fuzzy logic forms a
strong alternative to conventional analytical methods in many
applications.

We shall now give a broad comparison of the proposed ap-
proach and the existing navigation methods, such as those re-
viewed in Section II. The behavior-based navigation approach
proposed in this paper is fundamentally different from the ex-
isting analytical navigation methods. For performance compar-
ison, we focus on two specific aspects that are representative
of the navigation system. First, the common theme in most ex-
isting methods is that the terrain traversability is represented ei-
ther as an analytical function of the terrain characteristics, or
as a binary quantity depending on these characteristics. The
proposed approach, however, is built on reasoning with per-
ception-based information expressed in a natural language. As
a specific example, consider the assessment of terrain rough-
ness and traversability using existing methods and the proposed
approach. In most existing methods, the terrain roughness is
typically obtained mathematically as the residual of the least-
squares plane fit to the terrain segment. This measure of rough-
ness can lead to counterintuitive results for some terrains. For
instance, given a flat smooth terrain with a few large rocks, we
obtain a large residual that results in high roughness and low
traversability. On the other hand, using the proposed approach,
the terrain roughness is found from a set of intuitive linguistic
rules given in Section IV-A.1 that are representative of human
perceptual judgment. When applied to the same terrain seg-
ment described above, the rules produce an intuitive evaluation
of roughness asROUGH and terrain traversability asMEDIUM.
Second, in existing methods for navigation, data uncertainty
is often dealt with through probability-based methods. These
methods are not fully capable of handling the pervasive fuzzi-
ness of information present in the knowledge base of the naviga-
tion system. Imprecision in sensory measurements, and uncer-
tainty in data interpretation in the knowledge base, are mostly
based on possibility rather than probability. Fuzzy logic-based
methods, such as the proposed approach, have a built-in intrinsic
framework that is designed to address approximate reasoning
using uncertain information, where the uncertainty can be based
both on possibility and probability [29].

IX. FIELD-TEST STUDIES

The test and evaluation of the proposed navigation strategy
was conducted in three phases: graphical simulations, labora-
tory tests, and field tests. In the first phase, a software package
called the Robot Graphical Simulator was developed at JPL for
two–dimensional visualization of the robot motion using the
fuzzy rule-based navigation strategy [30]. The robot kinematics
and the on-board sensors were modeled in the software. Exten-
sive graphical simulations were carried out for test and evalua-
tion in different terrain layouts, as well as for comparison with
the Sojourner navigation system [30]. In the second phase, the
navigation strategy was implemented on an enhanced Pioneer
commercial robot (see below). A typical outdoor terrain con-
sisting of flat regions, sloped surfaces and large rocks was set
up in the laboratory. The rover navigation strategy was tested
extensively in the indoor laboratory environment.

In the third phase, field tests using the Pioneer All-Terrain
(AT) commercial mobile robot (rover) are conducted on rough
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Fig. 5. Pioneer rover with enhancements.

Fig. 6. Terrain sensor platform.

terrain in the arroyo (a dry river bed) outside JPL to test the
reasoning and decision-making capabilities provided by the
fuzzy logic behavior-based navigation strategy described in
Sections IV–VII. Fig. 5 shows the Pioneer rover augmented
with additional on-board processing capability, eight-input
image multiplexer and six video cameras. Fig. 6 shows the
physical layout of the camera platform used specifically to
provide terrain imagery data. The six cameras are placed
such that the lens centers are 740 mm above the ground, the
optical axis of each camera is tilted down by 8, the stereo
baseline length is set to 500 mm, and the intersecting origin of
all cameras is centered above the rover wheels. Each pair of
cameras views a 60wedge of the terrain located to the front,
right, and left of the rover. In other words, the cameras partition
the terrain into three 60circular sectors with a sensing radius
of about eight meters4 . The traversability indices of the front,
right, and left sectors are inferred in real time from the terrain
characteristics extracted from the camera images. The regional
perception range for the traverse-terrain behavior is set to
eight meters, i.e., the robot reacts to terrain characteristics
up to eight meters away. The robot stops every eight meters
(measured on a straight line from previous stop) at a waypoint
for re-evaluation of the new encountered terrain. There are
seven sonars mounted on the rover base for obstacle detection.
The outputs of these sonars are grouped together to produce
the closest obstacle distance in the front, right, and left sectors.
The rover is able to determine its current location and heading,

4This is a coarser resolution than the method described in Section IV, but is
adequate for our field testing.

Fig. 7. Natural terrain environment.

relative to a given start configuration, by dead reckoning using
its internal wheel-encoder information. The processing power
on board the rover consists of a 333 MHz Pentium II processor
housed in a chassis mounted at the rear of the rover. We
have chosen to use the Linux operating system, but have also
tested the system using a laptop computer running Windows.
Resident on the computer are the image processing algorithms
and the fuzzy logic computation engine used to calculate the
translational and rotational speed commands issued to control
the wheel motors. Using this mobile platform, field tests are
performed outdoors in natural terrain. Fig. 7 shows the terrain
environment with the rover start position located at the bottom
center of the image. Three field tests are conducted to evaluate
the navigation capabilities of the rover.

A. Field Test One

In the first field test, the three navigation behaviors, traverse-
terrain, avoid-obstacle, and seek-goal, are utilized by the rover
to navigate from a start position to a user-specified goal position,
while traversing the safest terrain and avoiding encountered ob-
stacles. The goal position is chosen approximately 20 meters in
front of the rover, measured on a straight line. Directly in-be-
tween the start and goal positions are two regions having low
traversability. One region contains a highly sloped hill, and the
other contains a large cluster of rocks, as seen in Fig. 7. The
rover first begins by analyzing the traversability of the three
partitioned 60 sectors (left, front, right) of the terrain located
in front of it. The front and left sectors (which contain the large
sloped hill) are found to have low traversability. The rover there-
fore turns toward the right sector, which is found to be highly tra-
versable, and proceeds to enter the safe region. Once in the safe
region, the rover travels toward a waypoint eight meters from the
start position (measured on a straight line), while ensuring that
it is still physically located in the highly traversable sector. After
reaching the waypoint, the rover stops, turns toward the goal and
re-analyzes the traversability of the new terrain ahead of it. This
time, the front sector is found to have low traversability due to
the large cluster of rocks located in this area. The left region is
found to have low traversability due to the large sloped hill, and
the right region is once again found to have high traversability.
The rover thus turns to the right again and proceeds into the
safe region. At this stage, the terrain in front of the rover is
highly traversable and obstacle free. Therefore, the weights on
the traverse-terrain and avoid-obstacle recommendations are re-
duced automatically, and the seek-goal behavior becomes dom-
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(a)

(b)

Fig. 8. (a) Rover path using fuzzy logic navigation rules. Top-left image shows rover start position and bottom-right image indicates goal achievement. Image
sequence proceeds to the right and down. (b) Sketch of test site and approximate rover path.

inant. At this point, the rover heads directly toward the goal on
a straight path. Fig. 8(a) shows the path traversed by the rover
from its original start position until it has autonomously reached
the specified goal position, using its on-board fuzzy logic nav-
igation and weight rules. Fig. 8(b) shows a free-hand sketch of
the test site features and the approximate path traversed by the
rover in this field test.

B. Field Test Two

In the second field test, the influence of the traverse-terrain
behavior on the rover navigation logic is demonstrated. In this
setup, the goal position is chosen approximately 10 meters di-
rectly in front of the rover. In addition, a large cluster of rocks
is located directly between the rover start position and the spec-
ified goal position. For the first test, the rover is commanded
to navigate to the specified goal position while the traverse-ter-
rain behavior is disabled, i.e., the recommendations of the tra-
verse-terrain behavior are totally ignored by presetting the tra-
verse weight to zero. As the rover navigates toward the goal, it
enters into the cluster of rocks. At this point, the rover slows
down and creeps its way into the center of the cluster. Eventu-
ally, the rover halts when its sonars detect rock obstacles located
on all three sides (front, left, right). As shown in Fig. 9(a), the

rover easily gets trapped in the cluster of rocks. For the second
test, the traverse-terrain behavior is enabled, and the rover is
shown to successfully reach the goal position (Fig. 9(b)). In this
test, the front sector is found to have low traversability due to the
rock cluster, and thus, the traverse-terrain behavior commands
the rover to circumnavigate the cluster of rocks. Fig. 9(c) shows
the approximate rover paths in both cases. This test demon-
strates that the traverse-terrain behavior can effectively analyze
and incorporate the terrain information directly into the naviga-
tion logic and enhance mission success by preventing entry and
entrapment of the rover in the rock cluster.

C. Field Test Three

In the third field test, the influence of surface discontinuity on
the fuzzy logic navigation is analyzed. In this setup, the rover
is commanded to approach a goal position located four meters
directly in front of the rover. In addition, a cliff edge is also lo-
cated directly in front of the rover less than four meters away.
The on-board navigation system first begins by analyzing the
traversability data of the left, front, and right regions of the
terrain located in front of the rover. The front and left sectors
both contain images of the cliff, and thus, are found to have
low traversability due to detection of a large surface disconti-
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(a)

(b)

(c)

Fig. 9. (a) Entrapment without traverse-terrain behavior. (b) Circumnavigation with traverse-terrain behavior. (c) Approximate rover paths.

nuity. The right sector is found to have medium traversability,
and therefore the rover turns right and proceeds to enter the safer
region upon which the rover motion is halted since the goal is
unattainable. Thus, the rover attempts to navigate toward the
goal but successfully turns away to avoid the cliff region. This
behavior is shown in Fig. 10(a) and in the free-hand sketch of
Fig. 10(b).

D. Performance Metric

The performance metric used for the evaluation of our field
tests parallels the one used by JPL for the Sojourner Mars rover
[27]. This metric evaluates the probability that the rover will at-
tain the designated goal for a given set of test runs over a given
set of test scenarios. Based on this metric, we evaluated 10 dif-
ferent test scenarios, with the rover operating on each test sce-
nario for five independent runs. A run was declared successful
when the rover’s position estimate implied that the goal was at-
tained. The rover reached the goal in 80% of the runs for each
field test, except in field test three where the designated goal
was chosen to be unattainable. The quantitative results used in
the evaluation of the field tests are listed as follows:

1) average rover speed: 20 cm/s;
2) average distance traveled: 35 m;
3) average travel time: 3 min;
4) runs attempted: five runs each of ten different scenarios;
5) success rate: 80%.

A run is declared unsuccessful when the distance between the
designated goal position and the rover’s final position exceeds
one meter, which is about 3% of total traversal distance on
average. After analysis, we concluded that there were three
main causes for the unsuccessful runs. One cause was the
skid-steering mechanism of the Pioneer rover, in which the
dead reckoning used for estimating the rover location and
heading tends to give inaccurate information. This inaccuracy
is caused by wheel slippage and sinkage and can be excessive
for long rover traversals. The dead reckoning error was more
noticeable in the rover heading estimation, leading sometimes
to incorrect rover heading after about 20 m traversal. Another
cause was the analysis of traversability in lighting conditions
that result in excessive shadows [18]. In these cases, the
traversability results were inaccurate and, in some situations,
all regions were considered unsafe, thus halting the rover before
it could attain the goal position. The last cause of unsuccessful
runs was sonar errors which occurred when detecting rocks
with sharp corners. In these cases, the sonar was unable to
detect the obstacle, due to the nature of sonar operation, and
the rover would head straight toward the obstacle.

Finally, as shown in the test images, the traverse-terrain be-
havior chooses the safest traversable region for the rover in all
test cases. The field test studies thus demonstrate the capability
of the terrain assessment and fuzzy logic navigation algorithms
for enabling safe traversal of the rover on a challenging terrain.
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(a)

(b)

Fig. 10. (a) Rover path with large surface discontinuity. (b) Approximate rover path.

Notice that the membership functions of the fuzzy sets used in
the navigation system are chosen by trial-and-error based on the
physical capabilities of the Pioneer AT rover.

X. CONCLUSIONS

The proposed behavior-based robot navigation strategy
using fuzzy logic rules has major advantages over existing
analytical methods. First, the fuzzy logic rules that govern
the robot motion are simple and easily understandable, and
can emulate the human driver’s perception, knowledge, and
experience. Second, the tolerance of fuzzy logic of imprecision
and uncertainty in sensory data is particularly appealing for
outdoor navigation, because of the inherent inaccuracy in mea-
suring and interpreting the terrain quality data, such as slope,
roughness, and discontinuity. And third, the behavior-based
strategy has a modular structure that can be extended very
easily to incorporate new behaviors, whereas this requires
complete reformulation for analytical methods. Multiple fuzzy
navigation behaviors are combined into a unified strategy,
together with smooth interpolation between the behaviors to
avoid abrupt and discontinuous transitions.

The addition of the on-board terrain sensing and traversability
analysis, coupled with the traverse-terrain behavior that takes
advantage of this information, are significant and novel con-
tributions of this paper. These capabilities allow the naviga-
tion system to take preventive measures by looking ahead, pre-

venting the robot from entry and entrapment in rock clusters and
other impassable regions, and instead guide the robot to circum-
navigate these regions. However, it must be pointed out that the
perception range of the traverse-terrain behavior is limited to the
regional terrain sensed by the on-board cameras, and does not
include the longer range global-scale terrain features. As such,
this behavior cannot prevent the robot from getting trapped in
a large cul-de-sac or box canyon. These situations, however,
can be avoided using a global map-based path planner that gen-
erates an optimally safe path clear of global hazards, which
is then passed on to the sensor-based navigation system. The
new regional traverse-terrain behavior introduced in this paper
complements the local avoid-obstacle and global seek-goal be-
haviors commonly used in behavior-based navigation systems.
The field test studies reported in this paper demonstrate that the
mobile robot possesses intelligent decision-making capabilities
that are brought to bear in negotiating hazardous terrain condi-
tions during the robot motion.
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