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Abstract—In recent years, the smart grid has been recognized as
an important form of the Internet of Things (IoT). The two-way
energy and information flows in a smart gird, together with the
smart devices, bring about new perspectives to energy management.
This paper investigates a distributed online algorithm for electricity
distribution in a smart grid environment. We first present a formu-
lation that captures the key design factors such as user’s utility, grid
load smoothing, and energy provisioning cost. The problem is
shown to be convex and can be solved with a centralized online
algorithm that only requires present information about users and
the grid in our prior work. In this paper, we develop a distributed
online algorithm that decomposes and solves the online problem in a
distributed manner, and prove that the distributed online solution is
asymptotically optimal. The proposed distributed online algorithm
is also practical and mitigates the user privacy issue by not sharing
user utility functions. It is evaluated with trace-driven simulations
and shown to outperform a benchmark scheme.

Index Terms—Convex optimization, demand response,
distributed algorithm, Enernet, Online algorithm, smart grid.

1. INTRODUCTION

HE term Internet of Things (IoT) was arguably first coined

in an online article by Kevin Ashton in 1999 [2], referring
to uniquely identifiable objects that are organized in an Internet-
like structure. There have been considerable interests and ad-
vances in [oT systems such as Radio-Frequency Identification
(RFID) and wireless sensor networks in the past decade [3]. In
recent years, the smart grid has been recognized as an important
form of IoT, where power grid is integrated with information
networks. The incorporation of communication, control and
computation intelligence in the smart grid, and the deployment
of smart meters (SMs) and smart facilities enable real-time
sensing, monitoring, and automatic control of electricity gener-
ation, distribution, and consumption. The integration of the
Internet and smart grid will lead to the so-called Energy Internet:
the Enernet [4].

According to the National Institute of Standard and Technol-
ogy (NIST) standard [5], the smart grid model includes seven
domains: Customer, Market, Service provider, Operations, Bulk
generation, Transmission, and Distribution. Each domain
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functions differently, interactively, and cooperatively. However,
in some cases, different domains may share some actors and
applications. For instance, the Distribution and Customer
domains probably contain SMs. On the other hand, an integrated
utility may have actors in many domains: a distribution system
operator could have applications in both Operation and Market
domains [5].

In this paper, we consider a real-time energy distribution in a
certain area with the smart grid system. As shown in Fig. 1, the
system considered in this paper includes three large domains:
Customer, Power Grid Operator (PGO), and Energy Distributor
(ED). The Customer domain here is similar to the one in the NIST
model, which represents power users including resident, indus-
trial, and others. The PGO performs as Market, Service Provider,
and Operations do in the seven-domain model. The ED includes
the generation, transmission, and distribution domains. It gen-
erates power to meet local demand and stores excessive power. It
also transmits power from outside when there is not enough local
generation and storage. This way, we simplify the seven domains
to three large domains or utilities. The SM in the Customer
domain is responsible for information exchange with the PGO
and for scheduling the electrical appliances on the user side. The
information flows are carried through a communications network
infrastructure, such as a wireless network or a powerline com-
munication system [6]-[8]. With both energy and communica-
tion connections among the domains, the PGO can exchange
information with the Customer and ED and thus it controls the
energy operation of the entire area.

Demand side management is one of the most important
problems in smart grid research, which aims to match electricity
demand to supply for enhanced energy efficiency and demand
profile while considering user utility, cost, and price [6].
Researchers have been focusing on peak shift or peak reduction
for reducing grid deployment and operational cost [9], [10], as
well as user or energy provider’s cost [11], [12]. In particular,
some prior works have jointly considered both user and energy
provider costs, to maximize users’ utility while keeping energy
provider’s costatalower level [1], [13]. Furthermore, privacy is
also emphasized in demand side management in practice. Some
researches investigate the privacy problem in the smart grid
from many aspects and show that an individual’s daily life can
even be reconstructed with collection of data on power usage
[14], [15].

Given the wide range of smart grid models and the challenge in
characterizing the electricity demand and supply processes and
the utility/cost/pricing functions, a general model that can
accommodate various application scenarios would be highly
desirable. Furthermore, it is important to jointly consider the
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Fig. 1. Ilustration of the key components and their interactions in the smart grid:
the PGO, ED, and Customer domains.

utilities and costs of the key components of the system to achieve
optimized performance for the overall smart grid system. For
optimizing the performance of such a complex IoT system, the
utilities and costs of the three key components, i.e., Customer,
PGO, and ED, should be jointly considered.

In this paper, we take a holistic approach to incorporate the key
design factors including Customer’s utility, grid load smoothing,
and energy provisioning cost in a problem formulation. To solve
the real-time energy distribution problem, we first introduce a
centralized offline solution and then a centralized online algo-
rithm (COA) from our prior work [16], which is variance-
sensitive without requiring any future information of the system.
Furthermore, we propose a distributed online algorithm (DOA),
which first decomposes the master problem into several sub-
problems and then solves them locally at each user and the PGO
with the online approach. We also investigate a communications
protocol to facilitate the information exchange for the iterative
DOA, which can be built on existing or emerging smart grid
communication standards [7], [8].

The proposed framework is quite general. It does not require
any specific models for the electricity demand and supply
processes, and only has some mild assumptions on the utility
and cost functions (e.g., convex and differentiable). The pro-
posed algorithm can thus be applied to many different scenarios.
It inherits the advantages of online algorithms that requires no
future information for a convergent solution, and the advantages
of distributed algorithms, which solves the problem in a distrib-
uted manner with local information. Although user power usages
are still exchanged with the PGO, the DOA mitigates the privacy
problem since it does not require disclosure of user’s utility
function and its parameters. The proposed algorithm is easy to be
implemented in a real smart grid system. The distributed com-
putation allows scalability for handling large systems. The DOA
inherits the variance-sensitive nature from the online algorithm,
while converging to the offline optimal solution almost surely, a
highly desirable property. The proposed algorithm is evaluated
with trace-driven simulation using energy consumption traces
recorded in the field. It outperforms a benchmark scheme that

is also distributed online but with no control for grid load
smoothing.

The remainder of this paper is organized as follows. We
present the system model in Section II. The problem formulation
with both centralized offline and online solutions are introduced
in Section I1I. The DOA is developed and analyzed in Section I'V.
The communications protocol is discussed in Section V. We
present the simulation studies in Section VI and review related
work in Section VII. Section VIII concludes this paper.

II. SYSTEM MODEL
A. Network Structure

We consider a power distribution system in the smart grid
environment where the PGO supports the power usage of all
users in the Customer domain. The users could be residential,
commercial, and industrial energy consumers. Each user deploys
an SM to monitor and control the energy consumption of the
electrical appliances [6]. All SMs are connected to the PGO
through the information infrastructure such as a wireless or
wireline local area network. During each distribution time cycle,
SMs and PGO exchange status and control information to
maximize users’ utility, to minimize the PGO’s generating cost,
and to smooth the total power variance. The ED then transmits
and distributes electricity to the users accordingly.

The relevant time period for the operation is divided into T'
time slots, indexed by ¢t € T = {1,2,...,T} and T is the set of
all the time slots. Usually, the operation time period is a 1-day
cycle based on the daily periodic nature of electricity usage,
while the time slot duration could be 1 h, 0.5 h, or 15 min,
according to users’ power demand pattern/timescale in consid-
eration of varying demand in different time of the day, as well as
the amount of users in an area in consideration of communica-
tions cost.

We denote the power consumption of user ¢ at time slot ¢ as
pi(t) and let N = {1,2,..., N} be the set of users. We also
define a set P of energy consumption at each time slot ¢ for each
user as

P = [pimin(t), Pimax(t)], forallteT,ieN (1)

where p; min () is the minimum power demand and p; yax (%) is
the maximum power demand of user ¢ at time ¢, as the users are
assumed to be rational. That is, [P includes all the possible value
of power requested and consumed, that is, p;(¢) € P forall i and
t. It is noted that [? is defined to be a nonnegative set, because
even today, few users are able to generate enough power for
themselves in a short time.

B. User Utility Function

We assume that each user behaves independently in the power
grid. They have their own preferences and time schedules for
using different electrical appliances. For instance, users may set
their air conditioner at different temperatures, and different
users may use their washer and dryer at different times of the
day. Also, the user demand may vary as weather condition
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changes. Usually, the power consumption is larger in a hot
summer (or a cold winter) day than that in a mild day in the
spring (or autumn). Furthermore, different users may have
different reactions to different pricing schemes [12]. Therefore,
it is nontrivial to characterize the diverse user preference with a
precise mathematical model.

In prior work, user preference is usually represented by an
utility function [11]. Similarly, we adopt a function U(p;(t),
w;(t)) to represent user ¢’s satisfaction on power consumption
in this paper. Here U (-) is a general, strictly increasing, concave
function of the allocated power p;(t), although the quadratic
utility function is also popular in the literature [11]-[13]. The
other parameter w;(t) of the utility function indicates user i’s
level of flexibility at time ¢. It is a “sorting” parameter for users
and thus can be normalized to be within the interval [0, 1] [17].
A larger w;(t) indicates a higher level of flexibility or power
consumption. For example, a user with w;(t) close to 1 will
probably consume more power than others. Different users can
have different w;(¢), and w;(¢) can vary over time.

In a centralized scheduling scheme, the PGO will require the
w;(t)’s from all users in every updating interval. The user utility
function and preference are private information, which can be
used possibly to reconstruct many aspects of users’ daily life and
infringe their privacy [14], [15]. Information about a user’s utility
function and its parameters should be protected. To this end, a
distributed algorithm that does not require exchanging privacy
information would be appealing.

C. Energy Provisioning Cost Function

For ED, when demand is in the normal level, the generation
cost increases only slowly as the demand grows. However, it will
cost much more when the load peak is approaching the grid
capacity, because PGO has to ask ED to transmit more power
from outside to avoid a blackout, which incurs considerable
power loss on the transmission line. Therefore, we could use a
general increasing and strictly convex function to approximate
the cost function for energy provisioning.

Similar to [12] and [13], we choose a quadratic function to
model the ED’s cost, as

Clg(t) =a-g*(t) +b-g(t) +c (2)

where a > 0 and b, ¢ > 0 are preselected for the power grid and
¢(t) denotes the total amount of electricity generated by the ED at
time slot . ED has to provide sufficient power for users while
reducing its cost.

In addition, we assume a maximum generating capacity
Imax(t) for ED at time slot ¢. Thus, we have the following
constraint for g(t):

S pilt) < g(t) < guax(t), forallteT.  (3)

ieN

The constraint indicates that ¢(t) € G = [gmin (), gmax(t)],
where gy (t) = > ,cnpi(t) and G is a closed positive set.
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Because the cost function C/(+) is strictly convex and increasing,
C(-) isreversible, so that the energy provisioning cost C'(g(t)) is
also bounded in a closed set, i.e., C(g(t)) € C for all t. In other
words, by adjusting the amount of power generation, the ED can
control its provisioning cost.

III. PROBLEM FORMULATION AND CENTRALIZED SOLUTIONS

In this section, we summarize the problem formulation and the
centralized offline and online algorithms presented in our prior
work [16]. This is just for the sake of completeness and we do not
claim contribution for this part. The proposed DOA is presented
in Section IV and evaluated in Section VL.

A. Problem Formulation

We consider three core parts in the smart grid environment:
Customer, ED, and PGO in the model. Under certain constraints,
we aim to achieve the triple goals of 1) maximizing users’ utility,
2) minimizing ED’s cost, and 3) smoothing the total power load
of the grid.

We first consider an offline scenario where the PGO has global
information on users’ flexibility w;(¢) and ED’s total generated
power g(t) for the entire period (i.e., future information is
known). Let P;(t) denote the power usage for user ¢ at time ¢,
for t € T. We use upper case P in the offline problem. In
the corresponding online problem, which is examined in
Section III-C, we use lower case p for the corresponding vari-
ables. A vector with subscript 7 is used to denote a time sequence,
e.g., P; for the power usage by user ¢ for t € T. The offline
problem (termed Prob-OFF) can be formulated as follows. For
P(t) € P, g(t) € G for all i € N,¢ € T, we have the offline
problem Prob-OFF as [16]

maximize: @(131, e 713N)
=> D _UP(t),wit) - O(g(t))]
teT |ieN
ol =
— TVM <%\; P,;) (4)
subject to: ZPi(t) <g(t), forallteT (5)

where Var(-) is the variance function defined as

Var (Z 13,) = %Z (Z Pi(t) — ;ZZP;(I@)>2.

ieN teT \ ieN keT ieN

The objective function (4) consists of three parts. The first
part represents users’ satisfaction and preference. The second
part represents ED’s cost for energy provisioning. The third part
represents the load variance of the grid. It is integrated with a
parameter « > 0, to enable a trade-off between the grid and the
users’ benefits. All the users’ demand and generating power
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should be included in the sets P and G as we have discussed in
Sections II-A and II-C.

B. Centralized Offfine Algorithm

In Problem Prob-OFF (4), the user power consumption
P;(t)’s are independent. Hence the grid load variance term can be
rewritten as Var(d ..y Pi) = > _icn Var(P;). It can be verified
that Prob-OFF is a convex optimization problem because func-
tion U(+) is concave and C(+) and Var(-) are both convex. Also,
due to convexity of the variance function Var(-), we can show
that Prob-OFF has a unique solution [16]. If we carefully define
sets P and G, the Slater’s condition can be satisfied as well, which
indicates that the KKT conditions are sufficient and necessary for
the optimality of Prob-OFF [18]. By solving the KKT conditions,
we can derive the optimal energy allocation for each of the users
at each time slot.

In Prob-OFF, all information are assumed to be known
a priori. Because of this, its solution is optimal. However, since
it requires future information for computing the grid load vari-
ance [i.e., the third part in (4)], we cannot solve the KKT
conditions at each time slot in practice.

C. Centralized Online Algorithm

We now present the online algorithm for energy distribution,
and show the main result that the online solution is asymptoti-
cally convergent to the offline optimal solution, i.e., asymptoti-
cally optimal. The online energy distribution algorithm consists
of the following three steps.

Algorithm 1: Centralized Online Algorithm

Step 1: For each ¢ € N, initialize p;(0) € P.

Step 2: In each time slot ¢, the PGO solves the following convex
optimization problem (termed Prob-ON). For p;(t) € P,
g(t) e Gforalli €N,

maximize: Z Upi(t),wi(t)) — C(g(t))—

ieN

_Z p1 P7 t_ 1)) (6)
ieN

subject to: Zpi (t) <g(t) for all t € T. (7)
ieN

Let p*(t) denote the solution to Prob-ON, where each element
p; (t) represents the optimal power allocation to user 1.

Step 3: Update p;(t) for all € N as follows and go to Step 2.

pilt) = pilt = 1)+ —— (i)~ pi(t = 1), (8)

t+«

Comparing (4), the variance term is approximated by
D ien (i — pi(t — 1))? in (6). Similar to problem Prob-OFF,
Prob-ON is also a convex optimization problem satisfying

Slater’s condition. The KKT conditions can be derived as
follows:

U’( 7 (1), wilt )) alp;(t) —pi(t —1)) = A*(t) =0
C'{g(t) + N'(1) = 0 o)
X‘(t) Sien Pi(t)/g(t) = 1) =0
A(t) >0 Vi

where \*(t) is the Lagrange multiplier. In (9), only information
for time slot ¢ is needed to solve the equations. This allows us to
solve the problem in each time slot without needing any future
information. The following theorem states that the offline solu-
tion converges to the optimal Prob-OFF solution, which is
obtained by assuming all future information is available. See
[16] for the proof.

Theorem 1: The centralized online optimal solution converges
asymptotically and almost surely to the centralized offline
optimal solution [16].

Although the formulation in [16] is slightly different with our
problem in this paper, the conditions of the theorem are still
satisfied in our model. Therefore, the theorem still holds true. It
presents a strong result, based on which we could solve Prob-ON
instead of Prob-OFF but with an equally good result.

However, Prob-ON is still solved in a centralized manner,
which means that at each time slot, PGO still requires the
accurate utility functions of all users with their preference
parameters w; (), which are important user privacy information.
It will be appealing to develop a distributed algorithm that can
preserve user privacy, but still achieve the optimal performance.
The DOA will also provide scalability and have low control and
communication overhead.

IV. DISTRIBUTED ONLINE ALGORITHM

In this section, we first decompose problem Prob-OFF in a
distributed manner, so that the PGO and every user can solve the
subproblems independently without requiring global informa-
tion. We then present a distributed offline algorithm for the
decomposed problem. Finally, we show that the distributed
offline problem can also be solved with an online approach, and
the distributed online solution is asymptotically convergent to
that of the centralized offline problem. Therefore, we can elimi-
nate the need to share users’ utility functions and their
parameters.

A. Decomposition and Distributed Offline Algorithm

First, the offline objective function (4) can be rewritten as

-2 (am ) B(k)2>> - cw»] (10)

k=1

where the first two terms are functions of P;(¢) and w;(¢) (i.e.,
information available at user ¢) and the third term is a function of
the total load ¢(¢) (i.e., information available at the PGO).
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However, we cannot decompose the problem in this simple way,
because constraint (5) involves both user information P;(t) and
PGO information g(t).

To decompose the problem, we first derive the Lagrangian for
Prob-OFF as'

t=1 | ieN k=1
= C(g(t)) = A (1) (Z Bi(t) — g(t)ﬂ
ieN
T o 1z 2
=2 12| vE®,w®) -5 (R-(t) > R(k))
t=1 | ieN k=1

where A\’ (t) is the Lagrange multiplier. In (11), functions of
P;(t) and g(t) are decoupled. For each P;(t) € P, define

ST (1) = maX{Z[U (P (t),wi(t))

For g(t) € G, define

RY(N(t) = maX{Z[/\T(t)y(t) —C(g(t))] } (13)

t=1

We can reformulate problem Prob-OFF to the Lagrange dual
problem as follows [18].

minimize : DT (AT (1))
subject to : AT (t) > 0 (14)
where
DT(NT (1)) = max{ LT (B(t), g(t), A" (1)) }
_SSTO0) + RIOT0). (15)

ieN

"The superscript [e.g., L7 () or A7 ()] indicates the functions and Lagrange
multiplier of the distributed offline problem. The superscript is removed for the
corresponding functions and Lagrange multiplier of the distributed online
problem.
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This way, problem Prob-OFF is decomposed into two parts: (i)
the first one is an optimization problem S7 (A’ (¢)) defined in (12)
for each user to solve and (ii) the other one is also an optimization
problem RT(A\T(t)) defined in (14) for the PGO to solve. Since
they are both concave and have linear constraints, strong duality
holds for careful selections of P;(¢) and ¢(t), which guarantees
the zero gap between Prob-OFF and the dual problem
DE(AT(1)).

B. Distributed Online Subproblem

Although we can apply several methods from convex optimi-
zation to solve problems (12) and (14) in a distributed way, such
an approach is still not practical because the offline problem and
solution require future information to be known a priori. We next
develop an online distributed algorithm to further eliminate such
need for future information.

Observe that in (11), the only term that needs future informa-
tion other than that at time ¢ is + ZkT:l P;(k), i.e., the average of
P;(t) over T, which is also a term in subproblem (12) for users.
Therefore, if the average of P;(¢) can be revealed with accumu-
lated historic information, we will be able to solve (14) in an
online manner. Similar to the idea of transforming problem Prob-
OFF into Prob-ON, we use p;(t — 1) to approximate the average
in the DOA and show that the solution obtained this way is still
asymptotically optimal.

We first present the distributed online subproblems by rewrit-
ing the distributed offline optimization problems for users and
PGO according to (12)—(15). At each time slot ¢, for each user ¢,
define

SiA®) = max{U(pi(t), wi(1))

—S o) —pt =1 = AOp(0)} (16)
R(A(t)) = max{A(t)g(t) — C(g(t))}- (17)
The objective function for A(¢) is
minimize: D(A(t))
subject to: A(t) >0 (18)
where
D(A(t)) = > Si(A(t) + R(A(1)). (19)

€N

This way, we derive the distributed online subproblems for
users and the PGO to solve. Note that the dual decomposition is
only able to decompose the online problem and we still need to
show that the distributed online problem is optimal and conver-
gent. The following theorem shows that the distributed online
subproblems can be solved and the solutions are asymptotically
optimal.

Theorem 2: The optimal solution to the distributed online
subproblems converges asymptotically and almost surely to the
offline optimal solution.
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Proof: Substituting (16) and (17) into (19), we have
D) =Y Si(A1)) + R(A(1))

= maX{Z(U(pi(t),wi(t))
— S0 = pi(t = 1)) - A(t)m(t))

+A()g(t) — Clg())}

= max{Z(U(pi(t), wi(t))

1eN

«

- 5(131'(15) — pi(t — 1))2>

— C(y(1) = A1) (Zpi(t) - g(t)> }

ieN

= max{L(p(t), g(t), \(t))}- (20)

Comparing function L(P(t), g(t), A(t)) with the centralized
online problem Prob-ON (6) and its constraint (7), it can be seen
that function L(p(t), g(t), A(t)) is actually the Lagrangian of
Prob-ON and \(t) is the Lagrange multiplier. Also function
D(A(t)) is then the dual function for Prob-ON. Similar to the
Prob-OFF case, the Slater’s condition holds true here again by
careful choices of p; (t) and g(t). Therefore, the distributed online
subproblems (16) and (17) have the same solution as the
centralized online problem Prob-ON.

On the other hand, Theorem 1 has proved that the solution of
Prob-ON is optimal and asymptotically convergent to the offline
optimal solution. We then conclude that the solution of the
distributed online subproblems is also optimal and converges
asymptotically to the optimal offline solution. |

The proof of Theorem 2 clarifies the relationship among
problems Prob-OFF, Prob-ON, and the distributed online sub-
problems. Actually, we can also achieve the distributed online
decomposition from Prob-ON by dual decomposition as we did
for Prob-OFF. Theorem 2 also presents an effective means of
solving the online distribution problem in a practical manner. We
next present the DOA.

C. Distributed Online Algorithm

Following Theorem 2, we can solve the dual problem (18) to
acquire the optimal online solution. Because of constraint (7),
S;(A(t)) and R(A(t)) are coupled by the Lagrange multiplier
A(t); A(t) is associated with both the user utility maximization
problem (16) and the ED cost minimization problem (17). As the
dual variable, it is also a key parameter for solving the dual
problem.

In our case, the dual function D(A(¢)) is differentiable. So, we
can apply the following gradient method to acquire the dual
variable A(t) at each time slot ¢ [19].

M(k+1) = l)\t(k) - 5(91%(’@ - ZP?}(’“))] (21)

1eN

where & is the step-size, []" is the projection onto the nonnega-
tive orthant, \;(k) is the kth update of A(¢), and g (k) and p; , (k)
are the solutions to (16) and (17), respectively.

At each time slot ¢, this method requires that PGO and the
user’s exchange A (k) and p; , (k) for a number of times to obtain
the convergent \(¢), the power that will be generated ¢(¢), and
the energy p;(t) allocated to each user i. We then present the
DOA, Algorithm 2, to solve the dual problem (18) as well as
problem Prob-ON. The algorithm consists of two parts:

1) a three-step Algorithm 2.a for all users;

2) a three-step Algorithm 2.b executed by the PGO.

Algorithm 2.a: Distributed Online Algorithm for Users

Step 1: For each user ¢ € N, initialize p;(0) € P.

Step 2: In time slot ¢, the SM of each user does the following:
1) Receives the updated A\;(k) from the PGO;
2) Solves problem (16) for user utility maximization;
3) Transmits the solution pj, (k) to the PGO for energy
demand;
4) Repeats 1) to 3) until |\ (k + 1) — X\ (k)| <&, where e > 0.

Step 3: Update p;(t) for all : € N as (8).

Algorithm 2.b: Distributed Online Algorithm for the PGO

Step 1: Foreachi € N, initialize p},(0) € . Choose an arbitrary
A (0) > 0.

Step 2: In each time slot ¢, the PGO does the following:

1) Solves problem (17) to obtain g;(k);

2) Receives p; (k) from all the users;

3) Updates the value of ), (k) using (21) and broadcasts it to the
users;

4) Repeats 1) to 3) until |\, (k + 1) — X\ (k)| <&, where e > 0.

Step 3: Sends ¢(t) to ED for energy generation for time slot ¢ and
distributes p;(¢) to user ¢ for all # € N.

Note that for each time ¢, we have a terminating condition that
|Ae(k+ 1) — A\i(k)| < e for the inner loop, where ¢ is a positive
real number small enough to indicate the convergence of \; (k). A
smaller € will produce a more precise A(t). But the computation
will also take more time. The other factor affecting the conver-
gence of \; (k) is the step-size 6 in (21). For the gradient method,
a small 6 guarantees the convergence of \;(k) but may require
more iterations. In fact, the terminating condition could be
rewritten as

<e€.

6<gt(k) - Zpi‘,t(k)>

1eN

Therefore, 6 and e should be carefully selected for Algorithm 2
to achieve fast convergence within one time slot. This is espe-
cially important for large scale systems with a large population of
users in the Customer domain, where the information exchanged
increases fast for more users. However, we conjecture that the
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communications will not be a big issue under today’s advanced
wired and wireless communication infrastructures. We will
evaluate the effect of 6 on the convergence of \/(k) in
Section VI-B.

In Algorithm 2, we see an interaction between users and the
PGO realized by the dual variable A(¢). It not only is the
necessary parameter to solve both (16) and (17) but also connects
users and the PGO decisions. The PGO has no information about
user utilities, while A(¢) instead conveys information from users
to the PGO. By updating A(t) as in (21), the new value contains
new information from both users and the PGO. Thus, by using
Algorithm 2, the online problem can be solved in a distributed
manner with comparable optimality to the COA. Further-
more, from Theorems 1 and 2, the distribution solution from
Algorithm 2 will also converge asymptotically to the offline
optimal solution.

It is worth noting that no information on user utility and
preference parameter is transmitted between the users and the
PGO. Consider practical data communication networks for the
smart grid, less-transmitted data bring about higher security,
reliability, and sufficiency. This also helps simplify the commu-
nication protocol designs for the grid. Furthermore, the compu-
tational load is offloaded from the PGO to the SMs at each user’s
site; the computation at the PGO is greatly simplified, leading to
resource and time savings, so that a larger number of users can be
supported. In conclusion, the DOA 2 could be useful in practice.

V. COMMUNICATION NETWORK PROTOCOL

Information exchange is an important element of the emerging
smart grid. Communications between SMs and the PGO are
essential for both control and distribution [7], [8]. The DOA is
also based on such information exchanges. As more advances are
made in smart grid, there is a compelling need for network
architectures, standards, and protocols for communications in
smart grid. We hereby introduce a basic protocol for commu-
nications network support in the smart grid for the proposed
DOA, which is simple but sufficient to support the real-time
online power distribution algorithm and can be built upon
existing or future smart grid communication standards [7], [8].

In the distributed online energy distribution algorithm, the
users and the PGO need to exchange A (k) and p},(k) several
times at each time ¢, to achieve a satisfactory p; (t) for users and
g(t) for the ED. The ED should update periodically the grid
information to the PGO and the emergency report should be
timely. The PGO also collects other information from the ED,
such as the actual grid load (AGL). After the DOA is executed,
the users obtain their own power consumption and the PGO
sends the total energy usage to the ED. Moreover, the PGO is able
to send other control information to the EP or users for, e.g.,
regulation, accounting, emergency response, and alerts.

Fig. 2 illustrates the information flows in the network system,
where we have three large entities in the system: the PGO is the
core controller and users and the ED are also important parti-
cipants. Fig. 2 illustrates the communications at time ¢. For other
time slots, the communications protocols are almost the same.
We take user ¢ as an example, because other users have similar
interactions with the PGO.
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Fig. 2. Information flows in the power distribution network.

With Algorithm 2, at each updating slot, the PGO solves the
subproblem, receives p;, (k) from the users and updates (k) to
the users; the users receive the updated M(k+ 1), use it to solve
the distributed optimization problem for users and update the
new solution to the PGO. The iteration process terminates when
the terminating condition is satisfied. Then the PGO will inform
the ED to transmit the power request and distribute to the users.
Meanwhile, the ED updates the power grid information to the
PGO and sends alarms when emergency events happen. The
PGO returns corresponding commands for the ED to execute.

VI. PERFORMANCE EVALUATION
A. Simulation Configuration

In this section, we evaluate the proposed DOA with trace-
driven simulations. The simulation data and parameters are
acquired from the recorded power consumption in the Southern
California Edison (SCE) area in 2011 [20]. We first study the
performance of DOA on convergence comparing to the COA
described in Section III-B. We then compare the distribution
solutions between DOA and COA, as well as with an existing
scheme as benchmark.

Consider a power distribution system in a small area with
N = 20 users and 15-min updating periods. For COA, the 15-
min interval is sufficient to obtain the required user information
and execute the centralized optimization algorithm. The 15-min
interval is also short enough to show the users’ change of
demand, although with DOA, shorter time slots are also practical.
We will show results within a 24-h time pattern for an evaluation
of the daily operations.

We choose users’ utility function from a function set U
in which the functions are generated as widely used
quadratic expression (see [11], [12]) with w;(¢) € (0, 1) random-
ly selected.

wi(t)pi(t) — §pi(t)’,
if0 < pi(t) < 4wi(t)
if pi(t) > 4w;(t).

U(pi(t),wi(t)) = (22)

4wi(t)7

We also assume that user’s energy demand p;(t) is selected
from the set of P = [1.0, 3.0] for all 7. The maximum generating
POWET gax (1) 18 set to the maximum total power demand of all
the users, i.e., gmax(t) = D,y Pimax(t), Which implies that the
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Fig. 3. Convergence of \s(k) when ¢ = 0.2.

generating power is equal to the power demand. The initial value
of A(t) in Algorithm 2 is picked randomly from the set and the
termination condition ¢ is chosen as 0.2. The parameters in the
energy provisioning cost function (2) are set as a = 0.05 and
b=c=0. These parameters are carefully determined after
studying the characteristics of the SCE trace. For parameter «
in the updating function (8), we take o =1 in the following
simulations. In [16], we have shown that « = 1 is a proper value
for fast convergence.

B. DOA Performance Evaluation

As shown in Section IV, DOA is based on the convergence of
(k). We first show the convergence of A, (k) inatime slot¢. The
gradient method applied in Algorithm 2 [see the updating
function (21) for A\;(k)] requires that the positive step-size ¢ be
sufficiently small to guarantee the convergence of A;(k). How-
ever, small 6 may slow down the convergence. For a fixed ¢,
which indicates the same tolerance for the convergent \;(k),
Fig. 3 illustrates the evolution of Ag(k) as a function of & for the
same user at the eighth time slot with different step-sizes 0. It is
observed that the series of A\g(k) with larger 6 of 0.25 has large
perturbation than the other two series of smaller 6. Also, the
series of A (k) with the smallest 6 0f 0.05 has the slowest speed of
convergence. Although the Ag(k) with § of 0.25 converges faster
than the one of 0.05, it is slower than the one of 0.15. This implies
that increasing 6 cannot guarantee faster convergence of \;(k),
because a larger 6 may make \; (k) not convergent. In practice, a
proper ¢ is important for convergence and thus the efficiency of
DOA. It can be decided after several simple experiments. From
Fig. 3, we also observe a fast convergence of \;(k) in about 10
times of information exchanges. We set 6 to 0.15 in all the
following simulations.

We then show the convergence of p;(¢) from both COA and
DOA. p;(t) is a key variable in the online algorithm. Its conver-
gence indicates that the gap between the online and the offline
solutions becomes zero [see the updating function (8)]. In Fig. 4,
Dicoa(t) and p; poa (t) for three users are both convergent. For
COA, we see a fairly fast convergence with a very short transient
period. For DOA, it shows slower convergence with larger
variance before stable values are achieved. This is because

-
w
(o>

-
w
N

-
w
N

— pi.oa(t)

-
N
(o)

-
N
(2]

Power consumption for each time slot (kwh)
w

-
N
N

-

3 5 7 9 11 13 15 17 19 21 23 25
Time (h)

Fig. 4. Convergence of p;(t) for DOA and COA for users of different levels of
flexibility.

1
1 3 5 7 9 11 13 15 17 19 21

Fig. 5. Evolution of A(t) for a 24-h period.

comparing to COA, DOA has another iteration function brought
about by (21) for updating A;(k). The initial value A;(0) is set
randomly, so it requires extra time for the convergence of
Dipoa (t). Also in Fig. 4, we find the coincidence of two curves
for the several last time slots. This can be explained by
Theorem 2, which indicates that DOA and COA deliver identical
solutions. It can be also observed in Fig. 4 that both algorithms
achieve convergence for users of different levels of consumption,
where user 13 has a w(t) larger than that of users 7 and 12.

It is common that the power usage of users may not have large
perturbations within one time slot. As discussed, A(t) is related to
the users and the power grid. It is natural to assume that the A(¢)’s
of consecutive time slots are correlated. If such a correlation
could be revealed, DOA can be further improved. Therefore, we
plot the variable A(¢) in Fig. 5. We observe a convergent trend of
A(t) for the 24-h period. However, it is not clear whether it is
convergent or not at this time. Because the initial value of \; (k) is
selected randomly, we can confirm our assumption that A(¢) and
A(t + 1) are highly correlated. Thus, set A;(0) as A(¢ — 1) would
reduce the iteration steps and speed up convergence in time slot ¢.

Furthermore, the power consumption of users and the grid
load are usually closely related for consecutive days. Therefore,

Authorized licensed use limited to: Auburn University. Downloaded on April 13,2020 at 02:39:14 UTC from IEEE Xplore. Restrictions apply.



78

40 T — T T T T T T T T T T

wW
[

n wW
(&} o

n
o

Total power usage (kwh)

10 i i i i i i i i i i i i i i
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71
Time (h)

Fig. 6. AGL and total power consumption by d-DOA and ¢-DOA of three
consecutive days.

we can use the final results/parameters from the previous day as a
starting point for the present day, which leads to a better
performance. We plot the grid load of three consecutive days
by applying DOA separately on daily basis (d-DOA) and by
applying DOA consecutively (c-DOA), as discussed in Fig. 6.
For the first 2 days, the grid loads are almost the same. We find
that c-DOA achieves an obviously better convergence perfor-
mance over d-DOA in Day 2 because the initial values of Day 2
are set to the final values of Day 1. Although the third day has a
lower grid load, c-DOA still achieves a better convergence and
smoothness performance over d-DOA, because the initial values
for d-DOA are randomly chosen. This way, we can enhance the
proposed algorithm to achieve fast convergence and reduce
communication requirements. In the remaining simulations, the
enhanced DOA algorithm is used whenever possible.

C. Comparison with Other Algorithms

One important benefit of DOA is the variance control it offers,
which is inherited from COA. In Figs. 7 and 8, we plot the AGL
and total power consumption by DOA, COA, and the state-of-
the-art algorithm proposed in [13], which is a dynamic pricing
algorithm (DPA) based on utility maximization. DPA considers
both users and the ED as we do in our paper, but it has no
consideration on the load variance. The AGL in Fig. 7 is the
summation of 20 independent users’ consumptions generated by
the average real load in the SCE trace on a hot day (i.e.,
September 1, 2011) [20]; while the AGL in Fig. 8 is based on
a typical day in the same SCE trace when the grid load is the
average case (i.e., October 5,2011) [20]. We show that these two
figures have a direct comparison of our energy distribution
algorithms.

From both Figs. 7 and 8, we first observe that DOA needs
several time slots to converge to COA. This is caused by the
effect of ¢, as discussed earlier. On the other hand, we also
observe a larger gap between the DOA and the COA curves for
the hot day in Fig. 7 than that for a typical day in Fig. 8. This is
because the typical day has a much lower peak demand. This
confirms that under average condition, DOA has very good
performance, which is close to COA.
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Fig. 7. AGL and total power consumptions achieved by DOA, COA, and DPA
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Fig. 8. AGL and total power consumptions achieved by DOA, COA, and DPA
for an average day.

On the other hand, peak reduction is another objective of our
algorithm. Peak refers to the highest point of the grid load curve
and for different curves, the amount of peak reduction is repre-
sented by the normalized percentage, which is calculated as the
ratio of the difference of the peak between the actual load curve
and the controlled load curve, and the peak of actual curve. We
have three controlled curves here: COA, DOA, and DPA. The
peak reduction percentages for COA, DOA, and DPA are 29.8%,
31.7%, and 10.9%, respectively, for the hot day, and 23.9%,
23.9%, and 12.9%, respectively, for the typical day. We can see
that DOA achieves almost the same peak reduction as COA in
both cases, which are superior than DPA. Note that both DOA
and COA have better performance on peak reduction of the hot
day over the typical day; while DPA has the opposite result. This
is because it does not consider variance reduction.

Finally, we compare several performance metrics for the three
schemes (i.e., DOA, COA, and DPA) together with the actual
trace results (i.e., the AGL based on the worse condition in the hot
day) in Table I. These metrics are usually used as optimization
objectives in prior work (see Section VII). As defined in (23), V,
U, and PK denote the averages (across all users) of the grid load
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TABLE I
SIMULATION RESULTS OF SEVERAL PERFORMANCE METRICS FOR DOA, COA,
DPA, axp AGL
System size N | Algoritm | V. | U | «(T) | PK
DOA 3.3 3.49 1.62 1.39
200 COA 0.02 | 3.52 1.69 1.35
DPA 24.5 | 3.66 1.74 1.61
AGL 535 | 3.86 1.86 1.97
DOA 9.2 3.51 9.54 1.41
500 COA 0.05 | 3.54 10.1 1.37
DPA 62.6 | 3.64 10.5 1.73
AGL 113 3.88 14.0 2.27
DOA 18.1 3.47 | 38.1 1.55
1000 COA 0.10 | 3.53 | 40.2 1.41
DPA 125 3.69 | 422 1.99
AGL 266 3.88 | 54.1 2.63

variance, users’ utility, users’ cost, and the peak of the total grid
load, respectively, while ¢(7T') is the total energy provisioning
cost for the entire period. The simulation results are listed for
systems with 200, 500, and 1000 users.

V ZLEN Var(**)

’sz 1 ZzeN ( wz(t))
P K= NmaxteuT E7€N Pl i (1) (23)
o(T) = Y1y C(Xien P (1)) /1000.

For V, the best performer is COA, which is closely followed
by DOA. This is consistent with the curves in Fig. 7. For U, we
observe a slightly better performance for DPA without the
variance control. For energy provisioning cost ¢(7'), the three
algorithms yield similar results, because they all include the
function C(-) as a part of objective function. For the peak PK,
we see the same result as in Fig. 7, with COA achieving the best
and DOA following COA tightly.

Opverall, the DOA proposed in this paper achieves better results
than DPA. Although COA is slightly better than DOA, its
centralized manner in energy distribution limits its usage in
practice for large scale systems. It also has the disadvantage of
requiring user’s privacy information. DOA successfully mitigates
these problems with the distributed approach. In summary, DOA
is a practical method with a highly competitive performance
comparing to the optimum, especially on variance control and
peak reduction, for online energy distribution in the smart grid.

VII. RELATED WORK

Smart grid, characterized with the two-way flows of electricity
and information, is envisioned to replace the existing power grid
in the future [21], [22]. A comprehensive review on smart grid
technologies and research can be found in [6], where major topics
on smart grid is discussed in three areas: infrastructure, manage-
ment, and protection.

Within the three areas, demand side management or demand
response has been attracting considerable research efforts [9],
[11], [12], [23]-[28]. Researchers work mainly on demand
profile shaping, user utility maximization, and cost reduction.
For example, machine learning is used in [11] to develop a

learning algorithm for energy costs reduction and energy usage
smoothing, while [23] aims to balance the users’ cost and waiting
time. A constrained multiobjective optimization problem is
formulated in [24] to minimize energy consumption cost and
maximize a certain utility among a group of users. Lyapunov
optimization is adopted in [26]-[28] to stabilize the energy
storage and user utility while reducing the operation cost of a
microgrid. Lyapunov optimization is also used in [25] to opti-
mally schedule the usage of all the energy resources in the system
and minimize the long-term time-averaged expected total cost of
supporting all users load demand. In these works, convex
programming, machine learning, and game theory are mostly
used. In some other works, online algorithms [29], which are
widely used in wireless communications and networking, is also
utilized [13], [16]. In [13], the authors propose an DPA based on
utility maximization in a distributed way. Reference [16] pre-
sents a COA that achieves the optimal energy distribution and
variance control without any future information.

Furthermore, for practical considerations, user’s privacy is
emphasized more and more by many authors [14], [15]. In [14],
the author studies how high-resolution user electricity informa-
tion can be used to reconstruct a user’s daily life and preference.
In [15], the authors examine privacy in smart grid from definition
to different concerns in detail.

Our work is inspired by considering the above two aspects for
the energy distribution in smart grid. In power systems, it is
possible to use online algorithms to detect and control the grid
load variance in real time. Also, the online algorithm can be
decomposed into subproblems for users to solve locally. Motived
by this two observations, we propose an energy distribution
DOA to achieve utility maximization, load smoothing, and
privacy protection. The proposed DOA is quite effective as
shown in Section VI.

VIII. CONCLUSION

In this paper, we presented a study of optimal distributed
online energy distribution in the smart grid. With a formulation
that captures the key design factors of the system, we extend our
prior work of a COA by decomposing the problem into many
subproblems that can be solved in a distributed manner, thus
protecting users’ privacy and achieving scalability. We also show
that the distributed online solution converges to the optimal offline
solution asymptotically. The proposed DOA is evaluated with
trace-driven simulations and outperforms a benchmark scheme.
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