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A B S T R A C T   

Combining cluster expansion (CE) method with one dimensional axial Ising model, this work investigated the 
effects of alloying elements and configurational variations due to temperature on the stacking fault energy (SFE) 
of FCC Ni binary alloys. Ensembles of large numbers of atomistic structures, each with more than ~400 atoms, 
were generated to consider sufficient long-range chemical disorder and temperature effects due to configura
tional entropy. A Monte Carlo Metropolis algorithm was used to generate these structures, whose energies were 
then evaluated based on the effective cluster interactions obtained from CE. As a baseline, this work had shown 
the SFE of pure Ni and Al to be 127 mJ/m2 and 137 mJ/m2, respectively, which agreed with the experimental 
values of 125 mJ/m2 and 150 mJ/m2 reported in the literature. Additions of Al, Ti, Cr and Co to pure Ni were 
found to decrease the SFE to different extents. Although temperature does not strongly influence the SFE of the 
FCC Ni-Al and Ni-Cr binary alloys, it can lead to significant changes to the SFE of the FCC Ni-Ti and Ni-Co alloys. 
While effects of temperature and composition on SFE observed in this work were calculated from binary Ni 
alloys, the general trends are nonetheless expected to be valid in the γ phase of multicomponent Ni superalloys.   

1. Introduction 

Ni superalloys, owing to their exceptional thermal–mechanical 
properties at elevated temperatures and in corrosive environments, find 
applications under extreme conditions, such as ones encountered in gas 
turbines and power plants [1–4]. The alloys’ superior high-temperature 
strength is primarily ascribed to a solid solution strengthened FCC ma
trix (γ) that can also be strengthened by γ’ and/or γ” intermetallic pre
cipitates. The γ’ precipitates have an L12 ordered lattice structure and 
are typically coherent with the γ matrix. The existence of Nb and Fe are 
believed to result in precipitation of another ordered phase, with D022 
lattice structure, known as γ” which is typically disk-shaped [5,6]. The 
γ” is semicoherent with the γ matrix and is at a significantly larger lattice 
mismatch— ~3.0% or ~0.5% depending on the crystallographic 
orientation [7]. 

Other phases, such as topologically close packed phases and various 
forms of carbides, are observed mostly at grain boundaries. These phases 
do not significantly contribute to the strength of the material, but can 

prevent grain boundary sliding and improve the creep properties of the 
alloy [8]. While the precipitates impede the gliding motion of disloca
tions and are primarily responsible for the strengthening in Ni superal
loys, the more compliant γ matrix accommodates plasticity better and is 
more susceptible to plasticity induced damage [9]. As is well known, a 
strong influencing factor for plasticity occurring in the γ phase is the 
stacking fault energy (SFE) [10,11]. 

In FCC crystals, a perfect dislocation dissociates into Shockley par
tials, bounding a stacking fault, to reduce the dislocation line energy. 
The width of the stacking fault is determined by the energy balance 
between the repelling partial dislocations and the fault’s excess energy. 
The equilibrium distance between the Shockley partials is therefore 
given as: 

deq =
Gb2

γSFE
f (1)  

where deq is the equilibrium distance of the Shockley partials, G is the 
shear modulus, b is the magnitude of the Burgers vectors of the partials, 
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γSFE is the SFE, and f is a geometrical factor that depends on the dislo
cations’ character [12,13]. Using this relation, transmission electron 
microscopy is typically used to measure the SFE by measuring the sep
aration distance between a partial dislocation pair [14,15]. 

Applied stress, temperature, and SFE dictate the activation of 
different mechanisms occurring during slip, such as cross slip and climb 
[16–18]. Cross slip can happen via the Friedel-Escaig (FE) mechanism 
[19–21], in which an extended core will constrict locally and dissociate 
again onto another slip plane [22]. Accordingly, the reduction in the SFE 
will increase the energy barrier for the cross slip. Similarly, dissociation 
of perfect dislocations into Shockley partials also results in the reduction 
of climb-rate as constriction is required prior to the climb of a disloca
tion. Indeed, Argon et al., using a hard-sphere model, demonstrated that 
the climb velocity of an extended jog is reduced as the SFE is reduced 
[23]. Experimental results also indicate that higher SFEs lead to higher 
creep rates [24–26] in dislocation creep regime, indicating the positive 
influence of SFE on the dislocation climb rate. 

SFE is strongly influenced by local chemistry [27]. The complex 
chemical composition of the Ni superalloys makes it difficult to account 
for the effect of all atomic species in numerical calculations. For 
instance, both molecular dynamics (MD) simulations and density func
tional theory (DFT) had been used to evaluate SFE using the supercell 
approach or the axial Ising model (AIM) [28–31]. The supercell 
approach calculates the SFE by comparing the total energies of perfect 
and faulted structures. However, the main drawback of MD had been the 
lack of accurate interatomic potentials that can represent multiple 
atomic species. On the other hand, DFT calculations, although capable of 
modeling the interactions among multiple atomic species, are compu
tationally limited. In addition, the interaction between different chem
ical species with the stacking fault tends to strongly influence the results 
of the calculations [32]. Direct DFT calculations with the supercell 
approach had been performed with only a few tens of atoms [29]. As a 
result, increasing the number of the random configurations (each con
taining 24 atoms) from 4 to 25 have led to a change in SFE by 20–30 mJ/ 
m2. 

In contrast to the supercell approach, the AIM is regarded as a “non- 
local” method and does not explicitly consider the location of a specific 
stacking fault. When combined with DFT, it can produce more reliable, 
“averaged” SFE values [29,33,34]. However, due to DFT’s inherent 
limitation in the computational length scale, the effect of chemical 
disordering in the alloys still cannot be properly accounted for. To this 
end, statistical mechanical models, such as the cluster expansion (CE) 
method, may help overcome the length scale barriers of DFT. Indeed, the 
DFT + CE framework had been successfully applied to investigate the 
effects of temperature and composition on the antiphase boundary en
ergy in Ni superalloys [35,36]. 

In this work, a combination of DFT, cluster expansion (CE), and AIM 
have been used to determine the SFE of FCC NixM(1-x) alloys (M = Al, Ti, 
Cr, and Co) in a temperature range that is likely to be encountered by Ni 
superalloys during service. The results shed light into the general effects 
of solutes and configurational variations due to temperature on the SFE 
of Ni superalloys. With the effective cluster interactions determined by 
CE, the chemical disordering effect was captured by calculating the 
energies of 1000+ randomized atomistic configurations per composi
tion—each of such configurations contained more than ~400 atoms. For 
each composition, three different crystal structures, namely FCC, HCP, 
and double hexagonal close-packed (DHCP), were considered to 
formally establish the second nearest-neighbor AIM. In what follows, the 
temperature effects on the SFE originating from configurational entropy 
is referred to as the “configurational temperature effect”. This article 
first explains the utilized methodology and describes the investigated 
material system in Section 2. Section 3 presents the main findings of this 
study and discusses the effect of solutes, configurational temperature 
effect, and their synergy on the SFE of Ni binary alloys. Finally, the 
conclusions are drawn in Section 4. 

2. Methodology and computational details 

Using AIM combined with CE and Monte Carlo (MC) sampling, the 
SFE of binary FCC NixM(1-x) alloys is calculated at a range of tempera
tures. Since the service temperature of most Ni superalloys are generally 
below 1100 K, it has been selected as the maximum temperature in the 
current study. Due to their high mechanical strengths and good corro
sion resistance, many Ni superalloys are also used in the room temper
ature. Therefore, the temperatures considered in this study are 300 K, 
700 K, and 1100 K. The approach, as summarized in the Graphical Ab
stract, include: (1) parameterization of the interaction between dissim
ilar atoms in an alloying environment using CE and DFT calculations in 
FCC, HCP, and DHCP lattices; (2) calculation of average per atom en
ergies of the randomized atomistic configurations under three parent 
lattice structures at each composition; and (3) calculation of SFE at each 
composition using AIM. This section provides details regarding each 
part of the procedure, including the AIM, CE, and DFT. 

2.1. Axial Ising model (AIM) 

AIM approach is adopted in this work to overcome the shortcomings 
of the supercell approach with DFT calculations, i.e. the undesired in
teractions between a stacking fault and its periodic images. Within the 
supercell approach, if the effects of such interactions are to be mini
mized, the number of atoms within the cell would have to be increased, 
and—if the random nature of the solid solution is to be captured—it will 
likely exceed the capability of the DFT method (100–200 atoms). 

In these cases, energy parametrization seems to be a viable alterna
tive. Indeed, the AIM, which was adapted from the generalized Ising 
model, has been utilized to parametrize energies of atomic structures 
composed of periodic stacking of atomic layers [33,34,37,38]. In this 
method, a spin parameter, Si, taking the values ±1, will be assigned to 
each layer based on the stacking of the next layer. For instance, in an 
FCC structure, if layer i + 1 conforms to the perfect stacking sequence, Si 
will be +1. Otherwise, Si will be assigned − 1. As an example, the spin 
parameters assigned to a stacking such as, …ABCBC…, would be shown 
in up/down spin notation as ↑↑↓↑↑, and the corresponding spin pa
rameters would be 1, 1, − 1, 1, 1. Having defined the spin parameters, 
the energy of an atomic stack can be calculated as: 

E = J0 − J1

∑

i
SiSi+1 − J2

∑

i
SiSi+2 − J3

∑

i
SiSi+3 − ⋯ (2)  

where Ji are the interaction coefficients having the units of energy, 
which can be obtained by equating Eq. (2) to the calculated energy of 
atomic stacks using numerical methods such as DFT and solving the 
corresponding linear systems of equations. The number of solvable 
interaction coefficients, Ji, depends on the available number of atomic 
stacks with known energies. The values of the interaction coefficients 
measure how strongly a particular atomic layer interacts with its 
neighbors, i.e. J0 indicates self-interaction, J1 indicates nearest-neighbor 
interaction, J2 indicates second nearest-neighbor interaction, etc. 

Theoretical works have shown that the second-order expression 
considering the interaction of next-nearest neighbors within AIM model 
is accurate enough to parametrize the energy of atomic stacks [39,40]. 
This work, therefore, only considers Ji where i ≤ 2. The energy per layer 
of the stack in each of the parent lattices is (here the lower case e is used 
to denote the per layer energy): 

eABC = J0 − J1 − J2 − O(J3)+

eAB = J0 + J1 − J2 +O(J3) + ⋯ (3)  

eABCB = J0 + J2 +O(J3)

Solving Eq. (3), one can obtain the interaction coefficients. Isolating 
a single fault within the structure by increasing the number of layers to 
infinity, the SFE can be calculated by subtracting the energy 
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polynomials as: 

EISF − EFCC = γISFAISF = 4J1 + 4J2 (4)  

where AISF is the area of the stacking fault, EISF and EFCC are the total 
energies of structures containing only one intrinsic stacking fault (ISF) 
and no stacking fault, respectively. For any compositions listed in 
Table 1, three different stacking sequences, namely ABC (FCC), AB 
(HCP), and ABCB (DHCP) (shown in Fig. 1), have been considered to 
calculate the interaction coefficients appearing in Eq. (2). Substituting 
Eq. (3) into Eq. (4), the intrinsic SFE can also be calculated by directly 
substituting the per layer, energy of these three stacking sequences, i.e. 

γISFAISF = eAB + 2eABCB− 3eABC (5) 

Each term appearing in Eq. (5) are the mean values obtained by 
averaging the per atom (normalized to the case of one atom per layer) 
energies of over 1000 variations in the atomic configurations, con
structed by MC sampling scheme and evaluated by CE method. 

2.2. Cluster expansion (CE) 

Energies of the atomic stacks used to solve for the interaction co
efficients in Eq. (2) are obtained using the CE method [41] via the ATAT 
toolkit developed by van de Walle et al. [42]. For each composition, 
~1000 randomized configurations/clusters of atoms representing 
alloying elements in a disordered solid solution are considered and their 
mean energy value obtained.  In CE formalism, any configuration 
dependent function, including energy, can be expressed using orthog
onal cluster functions (φαs) and the so-called effective cluster in
teractions (Kαs) i.e. 

E(σ) =
∑

α

∑

s
Kαsφαs(σ), (6)  

where α is the designation used for each cluster of atoms and s is the 
order of the orthogonal polynomial used to describe the cluster functions 
[41,44,45]. The effective cluster interactions (Kαs) can be fitted to the 
energies of small atomic clusters. No more than ~10 atoms [43], ob
tained from DFT calculations (such as the ones shown in the top and 
middle rows of Fig. 2). The accuracy of the CE, is measured by cross- 
validation (CV) score: 

CV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
Ei − Êi

)2
√

(7)  

where n is the total number of structures used to obtain the cluster 
interaction coefficients, Ei is the energy of the cluster i using DFT 
calculation, and Êi is the energy obtained by CE using all the structures 
except for cluster i to calculate the interaction coefficients. 

As SFE is sensitive to the local chemistry, the chemical disorder effect 
on the SFE can only be considered when enough structures are generated 
and their mean energy value obtained. For this purpose, starting from an 
initial structure, MC sampling is performed with the Metropolis algo
rithm to swap atoms within the lattice structure. Note that the MC 
“randomization” is needed as structures with lower energies are more 
probable to occur [46]. Starting with the initial atomistic configuration 
as the reference structure, if the new structure generated has lower 

energy, i.e. ΔE = E1 − E0 < 0, the new cluster will be accepted as a new 
reference configuration. Otherwise, a temperature-dependent proba
bility, exp( − ΔE/kbT), will be assigned for the acceptance of the new 
configuration. Here, kb is the Boltzmann constant, and T is the temper
ature in the units of Kelvin. At any given composition and temperature, 
configurational variations in the atomic structures generated by the 
aforementioned procedure may induce fluctuations in the SFE, which 
can be estimated based on the standard deviation (SD) of the energies of 
these structures under each parent lattice. According to Eq. (5), an upper 
bound estimation of the SD of γISF can be calculated as: 

SD(γISF) = 1/AISF[SD(eAB) + 2×SD(eABCB)+3 × SD(eABC)] (8)  

where SD(γISF) accounts for the natural fluctuation in the SFE due to 
configurational entropy, SD(eAB), SD(eABC), and SD(eABCB) are the SDs of 
the per-atom energies of the HCP, FCC, and DHCP structures generated 
by MC, respectively. As shown, the SDs of the per-atom energies of all 
lattice structures superimpose constructively in the calculation of SD 
(γISF). 

Since Eq. (5) is extremely sensitive to error, correction factors based 
on the difference in the energies obtained from DFT and CE performed 
on pure systems are considered for each element type. Note that the 
correction factors for a specific material vary by the change of the parent 
lattice. 

The advantages of using CE method over conventional direct DFT to 
calculate the energy of an atomic structure are twofold. First, many 
more different configurations can be calculated using CE, which in
corporates the effect of chemical disorder. Second, since CE can calcu
late much larger atomic clusters, much more dilute solid solutions can be 
accessed (compare 1 solute atom in a 10-atom cluster vs. 1 solute atom 
in a 400-atom cluster). 

2.3. Correlating CE of different parent lattices 

Within CE, the calculated per-atom energy of material with parent 
lattice-type β is presented as 

ECE
β =

∑n

i=1
xiEpure

i +ΔEinter (9)  

where the sum is taken over all atom types that exist in the configura
tion, xi is the concentration of atom type i, Epure

i is the per-atom energy of 
atom i in the pure limit, and ΔEinter is the interaction energy of dissimilar 
atoms within the configuration. Although the CE produces energies of 
atomistic configurations with relatively good accuracy (CV is below 
0.020 eV/atom for all cases), when performed on different parent lat
tices, it may give rise to small systematic errors that may accumulate due 
to the form of Eq. (5). As such, the energy terms used in Eq. (5) are 
obtained from Eq. (9) and adjusted based on a correction factor. 

The correction factors are obtained in the limit of pure materials 
using the per atoms energies acquired from DFT calculations (EDFT− pure

i ) 
as a reference, i.e. 

CCor. =
EDFT− pure

i

Epure
i

. (10) 

Thus, the final form of the calculated energy for parent lattice-type β 
that will be substituted in Eq. (5) is calculated as: 

Eβ =
∑n

i=1
Ccor.Epure

i xi +ΔEinter (11) 

Note that in Eq. (11), ΔEinter is a mean value evaluated based on 1000 
or more atomic configurations. In addition, ΔEinter is solely due to the 
configurational variations induced by finite temperatures – vibrational 
entropic effects [47] are not included. 

Table 1 
Compositional ranges of the binary NixM(1-x) alloys considered in the present 
work and the solubility of various elements in Ni.  

Alloying 
element 

Solute Concentration 
at.% 

Solubility 
@700 K at.% 

Solubility 
@1100 K at.% 

Al 5 10 15 20 25 11 15 
Ti 5 10 15 – – ~7 12 
Cr 9 18 27 36 45 36 47 
Co 15 30 45 60 75 100 100  
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2.4. Density functional theory 

To obtain the energies of the atomic clusters (such as ones shown in 
the bottom row of Fig. 2) for CE, first-principle calculations based on 
DFT as implemented in Quantum Espresso package has been performed. 
These small atomic clusters are periodic and typically contain no more 
than ~10 atoms (such as the schematic representations and the actual 
geometries shown in the top and middle rows of Fig. 2) [43]. The 

pseudopotentials have been obtained from the standard solid state 
pseudopotential (SSSP) repository [48]. The combined effect of nuclei 
and core electrons with the valence electrons is incorporated using the 
projector augmented wave (PAW) method for Al, while ultrasoft pseu
dopotentials are used for the rest of elements, i.e Ni, Ti, Cr, and Co. The 
Perdew-Burke-Ernzerhof parametrized form of the generalized gradient 
approximation for the true exchange and correlation functional is used 
in self-consistent calculations [49]. A plain wave basis with 35 Ry (476 

Fig. 1. Different stacking along 〈111〉 direction, used in Axial Ising model: a) HCP, b) FCC, and c) DHCP.  

Fig. 2. Top and middle row: schematic representation vs actual geometries of supercells relaxed by DFT calculations for different parent lattices: a) HCP, b) FCC, and 
c) DHCP. Bottom row: actual supercells whose energies are calculated by cluster expansion (CE). 
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eV) energy cutoff is used to expand the wave functions. For the inte
gration over the Brillion zone, the Monkhorst-Pack scheme has been 
used for k-point sampling with the k-point density of 0.02–0.03 Å in the 
reciprocal space. Necessary spin polarization is used whenever the 
clusters contain magnetic elements such as Ni, Cr, and Co. The energy 
convergence criterion for self-consistent energy calculation is 10− 7 Ry. 
To verify the accuracy of the pseudopotentials used, the lattice param
eters and the elastic constants of the pure elements were calculated and 
compared to data available in literature. The results of such comparison 
were provided in the authors’ earlier work [36]. For all three parent 
lattices, i.e. FCC, HCP, and DHCP, the volumetric relaxation is per
formed while keeping the ions fixed and maintaining the lattice sym
metry. This technique has proven to yield results in good agreement 
with the experiments, since chemical disorder was shown to have more 
influence on the SFE [29,36]. 

3. Results and discussion 

3.1. SFE of pure FCC crystals from DFT 

To establish a baseline and confidence in the methodology adopted 
in this study, the SFEs of pure Ni and Al crystals are first calculated using 
DFT combined with AIM and compared with the literature. Since there is 
no chemical disorder effect in the case of pure crystals, direct DFT cal
culations are used to obtain energies of the three parent lattices, 
including FCC, HCP, and DHCP. Computational details regarding DFT 
calculations are similar to what has been mentioned in Section 2.4. 
Ground state lattice structures are acquired by fitting the Murnaghan 
equation of state to a series of structures, with varying cell parameters 
[50]. The equilibrium lattice parameters of the FCC structures are also 
obtained from this procedure and are used to calculate the per atom area 
on the {111} lattice planes. Resulting SFE of pure Ni and Al are pre
sented in Table 2 along with the data available in the literature. The 
calculated SFE value in this study for Ni is 127.37 mJ/m2, and for Al this 
value is 137.44 mJ/m2, respectively, which resides well within the re
ported ranges by both experimental and numerical studies. For instance, 
Carter et al. have measured the equilibrium distance of a dissociated 
edge dislocation using weak beam transmission electron microscopy 
(TEM) and obtained the SFE of Ni to be within the range 120–130 mJ/ 
m2 [14]. Experimentally measured intrinsic SFE of Al is reported to be 
135 ± 20 mJ/m2 [51]. 

Next, to calculate the correction factors introduced in Eq. (11), the 
per-atom energies of prototypical FCC, HCP, and DHCP lattices for other 
elements considered in this study, i.e. Ti, Cr, and Co, are calculated using 
DFT as well. Accordingly, the determined correction factors (CCor.) are 
included in Table 3. 

3.2. Multicomponent CE parameterization 

Compositional range for each binary alloy (1-x for NixM(1-x), where 
M = Al, Ti, Cr, or Co) is decided such that only the disordered FCC solid 
solution forms throughout. Therefore, the range of compositions 
selected for CE of all parent lattices should cover the compositions 
investigated here. Based on the binary phase diagram of Ni-Al [52] 
starting from 300 K up to 1100 K, the solubility of Al linearly increases 
from 7.5 at.% to ~15 at.%. The excess Al dissolved into the Ni matrix 
above the mentioned threshold will form the ordered L12 γ’ phase. Since 
the lattice structure of the γ’ phase exactly matches that of the FCC 
parent lattice, the resulting energy values obtained from CE are still 
valid as a measure of the complex stacking fault energy [53]. On the 
other hand, Ni matrix can hold a maximum amount of ~15 at.% of Ti at 
1300 K. Lower temperatures at this composition or excess Ti solute 
addition to the system will result in precipitation of the Ni3Ti compound 
[54]. The equilibrium lattice structure of this phase is hexagonal D024 
[55]. Consequently, the CE performed using FCC parent lattice is no 
longer applicable to this phase. Therefore, the maximum concentration 
of Ti is limited to ~15 at.%. 

For Cr and Co, based on the phase diagram, in order to have a single- 
phase solid solution compatible with the FCC lattice structure, a 
maximum of 45 at.% and 75 at.% percent solute can be added, respec
tively [56–58]. Note that above the Co’s transition temperature (from 
HCP to FCC) Ni and Co are infinitely soluble. However, to avoid the 
formation of HCP phases at room temperature, the solute concentration 
is limited to 75 at.%. As listed in Table 1 for all the solute elements, 
multiple equally spaced compositional intervals are designed to capture 
the solute effect on the SFE. For all compositions listed above, the 
configuration-dependent energies are obtained using the multicompo
nent CE with correction factors applied (see Eq. (11)). 

Details regarding the multicomponent CE performed in this study are 
included in Table 4. In all three cases, a minimum of 25 at.% Ni is 
defined as the constraint by which the clusters are generated, and 
effective cluster interactions are obtained. As shown, all three CEs are 
resulting in energy values that are close to the exact energy values, 
evidenced by the cross-validation score of 0.0114, 0.0163 and 0.0189 
meV/atom are obtained for the HCP, FCC and DHCP parent lattices, 
respectively. Using MC metropolis algorithm, a minimum of 1000 
structures are generated and calculated for each parent lattice types and 
at each composition, reaching a convergence of the mean energy. In all 
cases, convergence is ensured within a threshold of 1 meV/atom. 
Typical convergence behavior of 15 at.% Al within the Ni matrix is 
shown in Fig. 3. 

3.3. SFE of binary alloys at room temperature 

The variation of SFE due to solute changes in binary alloys are 
measured by ΔγISF – a relative SFE with respect to that of the pure Ni 
(127 mJ/m2, see Table 2). The effect of solute concentration on the SFE 
of binary Ni-Al alloy at room temperature has been presented in Fig. 4(a) 
and compared to the values reported in the literature. As reported in the 
literature, with the increase of Al concentration up to ~10 at.%, the SFE 
significantly drops—as low as 60 mJ/m2 (50% of the reference value) 
[59]. The energy drop calculated in this study is almost linear with the 
increase in Al concentration and agrees well with the reported experi
mental results. Note that the experimentally measured value of SFE for 
pure Ni in Fig. 4(a) is obtained from Hirth and Lothe and the results for 
alloyed metal by Al addition are taken from the study of Beeston et al. 
[13,60]. A similar descending trend was also reported by Nie et al. using 
MD, although the present work was able to capture the trend shown in 
the experiment more accurately [31]. Al concentrations beyond 15% 
lead to a drastic increase in SFE. This trend, although not reported in the 
literature, does seem intuitive as the Al concentration of 25% corre
sponds to the formation of Ni3Al compound, which has a very high 
complex stacking fault energy of ~230 mJ/m2 [53]. 

Table 2 
SFE of pure Ni and Al.  

Al γSF(mJ/m2) Ref Ni γSF(mJ/m2) Ref 

This study 137.44  This study 127.37  
Exp. 280±50  [67] Exp. 125 [13] 

135±20  [51] 214 [68] 
166 [69] 120–130 [14] 
150±40  [70] 128 [69] 

Sim. 144 (MD) [31] Sim. 134 (MD) [71] 
158 (DFT) [72] 137 (MD) [73] 
124 (MD) [74] 125 (MD) [75] 
124 (DFT) [76] 110 (DFT) [77] 
130 (DFT) [78] 133 (DFT) [79] 
146 (DFT) [75] 127 (DFT) [79] 
164 (DFT) [80] 129 (MD) [81] 
203 ± 77 (DFT) [82]  262 (DFT) [83]  
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On the other hand, this study indicated that the increase in Co con
tent also decreases the SFE of the binary Ni-Co alloy at room tempera
ture. Delehouzee et al. have experimentally measured the stacking fault 
density of multiple binary solid solutions and reported that the stacking 
fault density measured from alloy filings using X-ray diffraction analysis 
is inversely related to the SFE [61]. Using this relation, one can estimate 
the SFE of a NixM(1-x) alloy based on its stacking fault density relative to 
the SFE and the stacking fault density of pure Ni. This procedure has 
shown a pronounced drop in SFE of binary Ni-Co alloys (red dashed line 
with hollow circles in Fig. 4(b)), which is in a good agreement with the 
present study. The experimental measurement from Koster et al. [62] by 
weak beam TEM is also in qualitative agreement with this study, 
although they reported a more significant rate of decline of SFE at the Co 

concentration of 55%~70%. As shown in Fig. 4(b), the discrepancy 
among the experimental data in the literature appears to have increased 
as the solute concentration decreases. The discrepancy is ~20 mJ/m2 

among these results at ~55 at.% Co concentration. 
The comparison of results from multiple numerical studies on the 

effect of solute concentration on the SFE of Ni-Co binary alloys are also 
plotted in Fig. 4(b) [29,31,63]. Chandran et al. utilized a similar AIM 
based approach to capture the effect of alloying elements on the SFE of 
binary alloys, although they used direct DFT calculations within the 
framework of AIM. The computational cost of direct DFT calculations 
limits the total number of atomistic configurations that can be consid
ered to account for the chemical disorder. In their study, an ensemble 
containing 30 different configurations was used at each composition. 
Data produced by Chandran et al. (green solid triangles in Fig. 4(b)) 
qualitatively agrees with this study and the experimental results, 
although relatively large scatter exists. The results from the MD calcu
lations by Nie et al. [31] however, appear to overestimate the SFE 
compared to the experimental results—at 70 at.% Co concentration, the 
difference in SFE is ~20 mJ/m2. 

The effects Ti and Cr solution on room temperature SFE of the Ni-Ti 
and Ni-Cr binary alloys are presented in Fig. 4(c) and (d) and were 
compared to the limited data in the literature. The present study sug
gests that both Ti and Cr reduces the SFE, which is in general agreement 

Table 3 
Per atom energies obtained from DFT, predicted by CE, and correction factors obtained for different lattice structures to be used in the AIM.   

FCC HCP DHCP  

DFT 
(eV/atom) 

CE 
(eV/atom) 

CCor. DFT 
(eV/atom) 

CE 
(eV/atom) 

CCor. DFT 
(eV/atom) 

CE 
(eV/atom) 

CCor. 

Ni − 4670.232 − 4670.254  0.9999953 − 4670.217 − 4670.223  0.9999986 − 4670.222 − 4670.261  0.9999916 
Al − 537.4697 − 537.2719  1.0003681 − 537.433 − 537.2068  1.0004217 − 537.457 − 537.3557  1.0001895 
Ti − 1622.432 − 1622.437  1.0000527 − 1622.461 − 1622.393  1.000011 − 1622.441 − 1622.328  1.0001154 
Cr − 2387.312 − 2387.324  1.0000105 − 2387.264 − 2387.216  0.9999895 − 2387.299 − 2387.408  1.0000547 
Co − 4061.093 − 4061.075  1.0000042 − 4061.097 − 4061.041  1.0000137 − 4061.094 − 4061.166  0.9999823  

Table 4 
Number of relaxed structures and cross validation scores for CE performed for 
the current study.  

Structure Number of clusters relaxed by DFT Cross validation score 
(eV/atom) 

HCP 1689  0.0114866 
FCC 1669  0.0163439 
DHCP 1725  0.0189006  

Fig. 3. Typical convergence behavior (using 15 at.% Al in Ni for instance) of the mean per atom energies with respect to the number of configurations generated by 
MC for three parent lattice types: a) HCP, b) FCC, and c) DHCP. 
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with the literature. Specially, within 15%, the predicted reducing effect 
of Ti (~120 mJ/m2) is more significant than that of Cr in the same 
concentration range. The literature data on the effect of Ti, although 
limited, appear to agree fairly well (see Fig. 4(c)) [61,63]. The present 
work slightly underestimates Ti’s reducing effect on SFE. As for Cr, 
although all literature data consistently suggested that Cr reduces SFE of 
the Ni based binary alloys, significant scatter exists (Fig. 4(d)) 
[61,63,64]. The present work’s prediction agrees well with the one 
made by Li et al. [34,64] at Cr at % below 30%. Nevertheless, the overall 
effect of Cr predicted by this work is in a reasonable agreement with the 
experimental measurement by Delehouzee et al [61]. The reducing ef
fect of Cr were also highlighted in the theoretical calculation of ternary 
alloys using first principle calculations [34]. 

3.4. Synergy of solute content and configurational temperature effects on 
the SFE of binary alloys 

The complete data set obtained from this study showing the com
bined solute atom concentration and configurational temperature ef
fects on the SFE of the Ni-base binary FCC alloys (measured by the 
relative SFE, i.e., ΔγISF) is presented below. The temperature effects 
captured in this work only arise from the temperature-dependent 
configurational entropy and do not incorporate the vibrational en
tropy [65]. As shown in Fig. 5(a), the temperature does not significantly 
influence the SFE value of Ni-Al alloy. As the concentration of Al in
creases (up to 15 at.%) the SFE experiences a relative decrease of ~125 
mJ/m2 (see Fig. 5(a)), effectively dropping to 0 on the absolute scale. 
Further increase in solute concentration increases the SFE. This 
increasing trend, as discussed in Section 3.3, is somewhat echoed by the 
experimental data available in the literature that the complex SFE of the 
Ni3Al (25% of Al) phase is ~235 mJ/m2, which is significantly higher 
than that of the pure Ni or any of the FCC Ni-Al alloys [53,60]. Since 

Ni3Al is a thermally stable compound and, as was shown by Dodaran 
et al. [36] no configurational variations were expected even at elevated 
temperatures (up to 1100 K), this trend of SFE variation of Ni-Al alloy 
beyond 15 at.% Al is expected to be valid at different temperatures 
[53,66]. 

Variation in the SFE of binary Ni-Co system is presented in Fig. 5(b). 
At room temperature (300 K), the SFE rapidly decreases with the 
increasing Co concentration. However, at elevated temperatures, the 
SFE exhibited a slight increasing then decreasing trend. Overall, the Co 
concentration does not seem to affect the SFE of the FCC Ni-Co alloy 
when the configurational entropic effects of higher temperatures (700 K 
and 1100 K) are considered in the calculations. In the case of the Ni-Co 
alloy, the temperature appears to strongly influence the SFE. No data, to 
the best knowledge of the authors, is available in the literature on the 
SFE of Ni-Co alloys at elevated temperatures. However, the decrease in 
SFE at room temperature obtained in this study is in perfect agreement 
with the existing numerical and experimental investigations [29,61,62], 
as was discussed in Section 3.3. 

As shown in Fig. 5(c), the increase in the concentration of Ti 
significantly decreases the SFE, while the increase in temperature has a 
similar effect, i.e., increase in temperature from 300 K to 1100 K tends to 
decrease the SFE as a result of change in configurational entropy. Note 
that the effect of solute concentration is far more pronounced than that 
of the configurational temperature effect. Overall, the introduction of 
15 at.% Ti solute decreases the SFE by 150 ± 50 mJ/m2 relative to pure 
Ni. The Cr concentration and configurational temperature effects on the 
variation of SFE of the FCC Ni-Cr is shown in Fig. 5(d). As an overall 
behavior across all temperatures, when Cr is introduced to pure Ni, the 
change in SFE is not significant up to ~25 at.%. However, the further 
increase in the concentration of Cr tends to decrease the SFE to a 
maximum of ~200 mJ/m2 relative to pure Ni. It is worth noting that the 
configurational temperature effect is most significant when the Cr 

Fig. 4. Variation in SFE (ΔγISF with the SFE of pure Ni as reference) as a result of change in solute concentration for a) NixAl(1− x), b) NixCo(1− x), c) NixTi(1− x), and d) 
NixCr(1− x) alloys. 
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concentration is ~25%. 
Fluctuations in the SFE (SD(γISF)) due to the configurational varia

tions in the atomic structures generated by MC, as calculated using Eq. 
(8), are shown in Fig. 5 as error bars. As shown, in most cases SD(γISF) 
increases with increasing temperature. This is expected since, as 
mentioned in Section 2.2, the temperature dependent probability 
assigned for the acceptance of new structures within the MC scheme will 
increase as the temperature increases, leading to larger configurational 
variation. Due to the same reason, for thermally stable, ordered com
pounds such as Ni3Al, the SD(γISF) is expected to be smaller than 
disordered alloys. Indeed, this is evident in Fig. 5(a) where the fluctu
ation in the SFE at 25 at.% Al is considerably smaller than other com
positions at all temperatures. Similarly, the SD(γISF) for pure Ni is always 
zero since the configurational entropy is zero. 

4. Conclusions 

In this work, the axial Ising model (AIM) is combined with density 
functional theory calculations (DFT) and cluster expansion (CE) to 
investigate the solute concentration and configurational temperature 
effects on the stacking fault energy (SFE) of binary Ni alloys. The effect 
of the chemical disorder has been incorporated by evaluating the en
ergies of a minimum of 3000 atomistic structures for each composition 
using the Monte Carlo (MC) sampling scheme. The CE method is used to 
calculate the energy of all the structures constructed by MC. The 
following conclusions can be drawn:  

1) Across the entire temperature range of 300 K-1100 K, an increase in 
Al concentration first decreases and then increases the SFE, while 
configurational temperature effects on SFE are negligible.  

2) An increase in solute concentration in binary FCC NixTi(1− x) alloy 
significantly decreases the SFE. Configurational variations due to 
temperature effects further reduces the SFE. 

3) An increase in Cr concentration decreases the SFE, while configu
rational variations due to temperatures does not have a clear and 
pronounced influence. 

4) The addition of Co reduces the SFE of the Ni-Co alloy at room tem
perature, while not significantly influencing SFE at elevated 
temperatures. 
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