
Vol.:(0123456789)1 3

Structural and Multidisciplinary Optimization (2022) 65:97 
https://doi.org/10.1007/s00158-022-03178-0

RESEARCH PAPER

Exact global optimization of frame structures for additive 
manufacturing

Oguz Toragay1   · Daniel F. Silva1   · Alexander Vinel1   · Nima Shamsaei2

Received: 4 June 2021 / Revised: 30 December 2021 / Accepted: 6 January 2022 / Published online: 28 February 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
We consider the problem of designing lightweight load-bearing frame structures with additive manufacturability con-
straints. Specifically, we focus on mathematical programming approaches to finding exact globally optimal solutions, given 
a pre-specified discrete ground structure and continuous design element dimensions. We take advantage of stiffness matrix 
decomposition techniques and expand on some of the existing modeling approaches, including exact mixed-integer nonlin-
ear programming and its mixed-integer linear programming restrictions. We propose a (non-convex) quadratic formulation 
using semi-continuous variables, motivated by recent progress in state-of-the-art quadratic solvers, and demonstrate how 
some additive-specific restrictions can be incorporated into mathematical optimization. While we show with numerical 
experiments that the proposed methods significantly reduce the required solution time for finding global optima compared 
to other formulations, we also observe that even with these new techniques and advanced computational resources, discrete 
modeling of frame structures remains a tremendously challenging problem.

Keywords  Discrete topology optimization · Additive manufacturing · Frame structures · Mixed integer non-linear 
programming · Mixed integer quadratically constrained programming · Mixed integer linear programming

Sets
�dof	� Set of all degrees of freedom in the ground structure 

( 3 × number of nodes)
�e	� Set of all potential elements in ground structure
�n	� Set of all nodes in the ground structure
D(k)	� Set of all degrees of freedom on node k
H(k)	� Set of elements in the neighbourhood of node k
S	� Set of all (e1, e2) pairs with e1, e2 ∈ �e such that e1 

may intersects e2
Parameters
amax	� Upper bound on ae variable
amin	� Lower bound on ae variable
umax	� Upper bound on displacement on each DoF
le	� Preliminary length of beam element e

N(e)	� (n1, n2) pair of nodes with n1, n2 ∈ �n such that ele-
ment e connects n1 and n2

�e	� Angle between element e and horizontal line
�e	� Stiffness matrix of element e
bei	� Vectors to generate stiffness matrix for element e 

( i ∈ {1, 2, 3})
K	� Structure’s stiffness matrix
E	� Young modulus of elasticity
d	� Number of all degrees of freedom in the structure
pj	� External load on degree of freedom j
�	� Vector of all external nodal loads in the structure
�	� Density of the used material

Design Variables
�	� Vector of all elements’ cross-sectional area
ae	� Circular cross-sectional area of element 

e          ∈ ℝ
+

xe	� Indicates the inclusion of beam element e in the 
resulted structure         ∈ {0, 1}

xec	� Indicates that profile c is chosen for element e in the 
resulted structure         ∈ {0, 1}

yk	� Indicates the inclusion of node k in the resulted 
structure         ∈ {0, 1}
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State Variables
Ie	� Moment of inertia of element e          ∈ ℝ

�	� Vector of Ie s for all elements          ∈ ℝ
|𝕊e|×1

uj	� Displacement on degree of freedom j         ∈ ℝ

�	� Vector of displacements on all DoF         ∈ ℝ
d×1

1  Introduction

Design of lightweight structures is an important task for 
many engineering fields, including mechanical, civil, aero-
space, and biomedical engineering. Recently this interest 
has intensified due to advances in metal-based additive 
manufacturing (AM), which can vastly expand the variety 
of possible designs, albeit while introducing its own set of 
limitations. In this work, we specifically focus on additively 
manufactured frame structures. In designing such structures, 
it is usually assumed that a fixed ground structure is first 
established, which defines the set of possible elements. The 
problem is then in selecting a subset of these elements and 
their dimensions, in a way that can be feasibly manufac-
tured and such that the overall structure can withstand a 
pre-specified external load, while minimizing the structure 
weight (or vice versa, i.e., the structure that can withstand 
maximum load while satisfying a weight constraint). Fig-
ure 1 shows two examples of regular ground structures 
based on a grid, however, ground structures can assume any 
shape appropriate for the design task. The problem com-
bines discrete (which elements are selected) and continu-
ous (cross-sectional areas) decision variables, which is part 
of the reason why it can be computationally challenging. 
Recent advances in exact global optimization software and 
available computing resources suggest a potential for solv-
ing some of these instances to optimality. The goal of this 
study is to evaluate existing techniques and propose new 
ones that can take advantage of these advances, specifically 
in the context of AM.

Discrete structures can generally be classified into two 
types based on the mechanical behavior: trusses and frames. 

Trusses consist of pin-joined bar elements, i.e., elements that 
cannot convey bending moments while exposed to external 
loads. In contrast, frames are constructed from rigid-joint 
beams. On one hand, mechanical behavior of either type of 
structure is well-understood, and consequently, its response 
to any external load can be characterized numerically. On the 
other hand, optimizing the design can be an exceptionally 
challenging computational task for trusses and even more 
so for frames. As reviewed in Sect. 2, partially due to this 
computational challenge, truss structure optimization is rela-
tively well-studied, whereas frame optimization is less com-
mon. By design, additively manufactured discrete structures 
are primarily modeled as frames, and consequently in this 
effort we focus on those.

The aim of this paper is to revisit the frame structure 
optimization problem over a given discrete ground struc-
ture. Specifically, we are interested in exact globally opti-
mal solutions as opposed to heuristics. This is motivated by 
recent progress in capabilities of commercial global opti-
mization solvers, particularly for non-convex quadratically 
constrained problems. Consequently, our specific research 
goals are as follows: 

(A)	 Propose a mixed-integer quadratically constrained pro-
gramming (MIQCP) formulation for minimum-weight 
frame structure with continuously measured beam-ele-
ment cross-sectional area and restrictions on allowed 
displacements.

(B)	 Establish an approach to incorporate additive manufac-
turability constraints.

(C)	 Evaluate the potential for finding globally optimal 
structures using modern optimization solvers and avail-
able computational resources.

It is worth emphasizing here that while we do observe that 
the proposed MIQCP approach outperforms existing exact 
formulations and is better than or comparable to linear 
approximations (depending on the selection criterion and 
instance), the underlying problem remains computationally 

Fig. 1   Examples of regular 
ground structures. Note that 
here all beams at angle less than 
45◦ to the ground are excluded 
due to manufacturability restric-
tions
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challenging. Therefore, in this research, we also set out to 
outline the scale of the problems that can be solved to global 
optimally. The results we present indicate that practical, 
realistically sized AM design problems still cannot be fully 
solved with exact methods. On the other hand, our findings 
can also inform the development of heuristic methods, more 
applicable for practical problems by serving as a subroutine 
or for validation.

The remainder of the paper is organized as follows. In 
Sect. 2 a review of related literature is given. After a brief 
explanation of the design problem, Sect. 3 presents three 
mathematical optimization models for solving the problem, 
two adapted from the literature and one proposed here. Each 
is supplemented with relevant AM constraints. Section 4 
provides the results of the numerical experiments comparing 
the models. Section 5 concludes the paper by summarizing 
the main results and findings and providing a road map for 
future work. Finally, we show how the results of this work 
can be replicated.

2 � Background

In this section, we first summarize relevant works in struc-
tural optimization (SO) in general and then narrow down 
our focus to lightweight frame structure fabrication by metal 
additive manufacturing, specifically. The concept of light-
weight structures, or in other words, distribution of material 
in the most economical way, can be first attributed to Michell 
(1904). Since then, the topic has received significant atten-
tion. SO methods can be categorized as (Stolpe 2016): size 
optimization, shape optimization and topology optimization. 
Size optimization focuses on the cross-sectional area of all 
elements in the ground structure where none of the elements 
are allowed to vanish. On the other hand, shape optimization 
changes the shape of the structure by modifying the nodal 
coordinates, member lengths, and member presence in the 
optimized structure. Topology optimization is a combination 
of these two, where both presence and size of the elements 
can be modified during the optimization process. For more 
details see, for example, Querin et al. (2017), and Bendsoe 
and Sigmund (2013). In the remainder of this section we 
focus on the topology optimization literature, as applied to 
frame and truss structures only.

Two main streams of research efforts in topology optimi-
zation of structures, have been established in the literature by 
Dorn (1964) for discrete structure’s topology and by Bend-
soe and Sigmund (2013) for continuum structure’s topology. 
Ground structures or design domain basis for optimization 
procedure are widely used approaches, where fixed nodal 
locations are connected with a set of possible candidate ele-
ments (bars or beams). On this ground structure, applied 
load(s), boundary conditions and specific design restrictions 
are assumed to be given. According to Bendsoe and Sig-
mund (2013), the design variables in this case are the size, 
the shape, and the connectivity of the structure (i.e., which 
elements are selected). A thorough review of the related lit-
erature can be found in Stolpe (2016) for discrete and in 
Eschenauer and Olhoff (2001), and Deaton and Grandhi 
(2014) for continuum structures. Stolpe (2016) categorized 
the approaches for modeling topology optimization prob-
lems using the ground structure method as follows:

–	 minimum compliance (maximum stiffness) problem with 
the constraint on the structure’s volume,

–	 minimum weight problem with constraint on the compli-
ance,

–	 minimum weight problem with constraints on the nodal 
displacements and element stresses.

Note though, that from the mathematical programming per-
spective, these can often be considered as equivalent repre-
sentations of the same multi-objective problem.

Truss structures. Using bar elements and consequently 
optimizing trusses as a discrete structure is a popular prob-
lem in the literature. As noted by Grossmann et al. (2014) 
if each bar’s cross-sectional area is considered as the design 
variable, then the resulting optimization problem can be 
classified as non-convex nonlinear programming (NLP). 
Further, due to particular manufacturing constraints, design 
variables are often also restricted to take discrete values, 
which gives rise to mixed-integer nonlinear programs 
(MINLP). A Mixed Integer Linear Programming reformula-
tion of such problems with separable objective functions and 
bilinearities in the constraints is given by Grossmann et al. 
(2014). Several approaches for tackling the truss topology 
optimization problem have been considered; see for exam-
ple Bollapragada et al. (2001); Stolpe and Svanberg (2003); 
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Stolpe (2004); Rasmussen and Stolpe (2008); Achtziger and 
Stolpe (2007); Cerveira et al. (2013). Various mathematical 
modeling approaches have been proposed for truss struc-
tures. For example, mathematical program with complemen-
tarity constraints (MPCC) by Kočvara and Outrata (2006), 
second order cone programming (SOCP) by Lobo et al. 
(1998), and meta-heuristic methods by Kaveh and Zolghadr 
(2014) are some other approaches to solve the discrete topol-
ogy optimization problem for truss structures. As observed 
by Makrodimopoulos et al. (2010), the popularity of truss 
structures is due to the simplicity of designing and the ease 
of mathematically formulating these structures. At the same 
time, by design, truss structure modeling is not practical for 
additively manufactured parts, giving rise to renewed inter-
est in frame structure optimization.

Frame structures. While similar in problem statement to 
trusses, frame structure optimization is generally considered 
to be significantly more challenging from both the modeling 
and computational perspectives. Specific difficulties include: 
larger number of required variables, more complicated 
finite element analysis equations and higher-dimension and 
more involved structure of the stiffness matrix. Tradition-
ally, frames have been considered for optimization of steel 
building structures. Since these are generally only fabricated 
in discrete standard sizes, such frame optimization prob-
lems necessarily involve discrete design decision variables. 
Early approaches employed rounding of continuous vari-
ables, which can result in inferior results (Chan 1992). An 
extensive review of mathematical programming and meta-
heuristic methods for optimization of frame structures is 
given by Saka and Geem (2013). Some notable examples 
include, Optimality Criteria method proposed by Chan 
(1992), Genetic Algorithm-based approach implemented 
by Erbatur et  al. (2000), outer-approximation/equality-
relaxation iterative algorithm proposed by Klanšek et al. 
(2007) and Karush-Kuhn-Tucker (KKT) conditions and the 
complementary strain energy method proposed by Takezawa 
et al. (2007). Other, more recent approaches include: mixed-
integer second-order cone programming that Kanno (2016) 
proposed, robust optimization, and gradient-based optimi-
zation proposed by Changizi and Jalalpour (2017a, 2017b), 
and even a combination of reinforcement learning (RL) and 
meta-heuristics proposed by Hayashi and Ohsaki (2020). An 
important tool for improving computational tractability of 
the underlying mathematical programming problem, which 
we also employ in this effort, is decomposition of the stiff-
ness matrix. In a series of papers (Stolpe and Svanberg 2003; 
Rasmussen and Stolpe 2008; Stolpe 2007) this approach was 
developed for trusses and then extended to frame structures. 
Kureta and Kanno (2014) implemented similar approach 

when considering the design of periodic frame structures 
with negative Poisson’s ratio. We elaborate on the details of 
in Sect. 3 as it is related to the method proposed here.

Applications to additive manufacturing. AM methods 
have led to a radical change in the way that design for fab-
rication problems are considered, which includes new fron-
tiers for topology optimization. Two particularly relevant 
reviews are given by Wang et al. (2016) and Liu and Ma 
(2016). The former concentrates on existing approaches 
to using topology optimization for continuum material in 
medical implants specifically. The latter discusses additive 
manufacturing oriented topology optimization in general. 
For example, Cansizoglu et al. (2008) used electron beam 
melting (EBM) to fabricate 3D optimized frame structures. 
The design variable were joints’ locations and the objective 
function was the compliance of the structure. They imple-
mented Quasi-Newton line search for unconstrained opti-
mization and sequential quadratic programming (SQP) for 
the models with constraints on the mechanical properties of 
the structure. They mentioned as a result that, they found 
“discrepancies between the performance of the theoretical 
structures and the physical EBM structures due to the lay-
ered fabrication approach”. Smith et al. (2016) proposed a 
work-flow to start the design process from a design domain 
(which is not a ground structure due to continuity) by find-
ing an optimized layout for the structure. Throughout a set 
of post-optimization steps, the resulting layout is converted 
to a continuum structure viable for additive manufacturing. 
To the best of our knowledge, there are only a few works 
focused on the applications of additive manufacturing in the 
fabrication of optimized discrete structures in comparison 
to the continuum structures. See for example Gorguluarslan 
et al. (2017), and Li and Chen (2010). Most of the applica-
tions in the literature focused on the continuum structures 
when the material distribution among design area is opti-
mized by removing the material that is less desired (making 
holes in the continuum design domain). This is due mainly 
to the fact that discrete frame structure optimization prob-
lems remain extremely challenging computationally, espe-
cially if exact global optimization is concerned. At the same 
time, recent progress in both availability of computational 
resources and quality of state-of-the-art non-convex global 
solver (particularly, the release of Gurobi solver for non-
convex MIQCP problems), could expand potential applica-
bility of discrete frame optimization.

The contribution of this paper is two-fold. First, we pro-
pose a mixed-integer quadratically constrained programming 
formulation for frame structure optimization problem, while 
taking into account additive manufacturability constraints. 
The formulation is equivalent to the exact optimization 
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problem (unlike linear reformulation), and as such is guar-
anteed to achieve global optimum (given enough computa-
tional resources), and is designed to take advantage of mod-
ern advances in optimization solvers. Second, we evaluate 
the potential for finding globally optimal solutions for frame 
structure design problems as a problem class, in light of 
the aforementioned advances in solver technology, as well 
as computational resources. While we are able to demon-
strate that the proposed MIQCP formulation performs well 
compared to other existing models (specifically, outperforms 
the naive nonlinear model across the board, and is better 
or comparable with MILP restricted formulations), we also 
observe that despite these efforts, only a very limited set of 
instances can actually be solved to global optimality in a 
reasonable time.

3 � Mathematical models

We consider three modeling approaches to the frame struc-
tures optimization problem, referred to as: mixed integer 
non-linear programming (MINLP), mixed integer quad-
ratically constrained programming (MIQCP) and mixed 
integer linear programming (MILP) models. MINLP and 
MILP models are adapted from the literature with additional 
improvements and modifications that enable these models 
to allow for additive manufacturability constraints. The pro-
posed MIQCP model is novel to this work. In it we use semi-
continuous variables for defining the beam elements’ cross-
sectional areas, which allows for reformulating the general 
non-linear constraints as quadratic.

3.1 � General problem statement and stiffness matrix 
decomposition

We consider the following general form of the weight mini-
mization problem for a frame structure:

where it is assumed that a planar ground structure is given 
(sets �n and �e of potential nodes and beams) and the can-
didate solution is defined by vector � of cross-sectional 
areas for each potential beam. Then the first constraint 
(equilibrium equations) allows for evaluation of node dis-
placements, which can then be bounded in order to enforce 
overall mechanical response of the structure under a given 
load vector � . Note that we could alternatively consider 
a formulation that minimizes displacements subject to a 

minimize weight of the structure

subject to �(�, �)�= �

umin ≤ � ≤ umax

manufacturability constraints,

constraint on the total weight. The problem also requires 
manufacturability constraints, which can be specific to the 
additive manufacturing process. As the displacements are 
assumed to be small, Euler-Bernoulli beam elements can be 
used in analyzing the mechanical behavior and characteris-
tics of the structure. We generate the ground structure based 
on the given length, width and number of nodes in each 
dimension of the target structure. Each node in the structure 
corresponds to 3 degrees of freedom (displacements in x 
and y directions and the rotational displacement). Hence, 
each beam element corresponds to 6 degrees of freedom. 
Compared to truss structures, where elements are not rig-
idly connected (and hence do not generate displacements 
due to rotation), frame structures result in a significantly 
more complicated stiffness matrix. In the case of trusses, 
stiffness matrix can be reformulated in such a way as to 
allow for naturally eliminating all non-linearity from the 
problem, which is generally impossible for frames. As an 
alternative to linearization, each 6 × 6 element of the stiff-
ness matrix can be decomposed following an approach in 
Stolpe and Svanberg (2003); Stolpe (2004); Rasmussen and 
Stolpe (2008); Kanno (2016). A detailed description of the 
mechanical relations used in the decomposition is given in 
Appendix . This approach results in the following equation 
for the stiffness matrix �:

where constant values kei for each element e are defined as:

and ��� is given by

Note that in the equations above, ��� ∈ ℝ
d×1 are d × 1 vec-

tors from which the stiffness matrix � ∈ ℝ
d×d can be gener-

ated. For the definitions of the matrices �⊤
e
 , �����⊤

e
 , and b̂ei 

that are used in the equation (3.3) we refer the reader to the 
Appendix. While it still results in a nonlinear expression, 
this decomposition is instrumental in allowing for formulat-
ing the models presented next.

3.2 � Mixed integer non‑linear programming model 
(MINLP)

The following MINLP formulation is obtained by directly 
applying the stiffness matrix decomposition to the general 
formulation, as well as enforcing AM manufacturability con-
straints. It serves as the basis for the other two formulations.

(3.1)

� =
∑

e∈�e

aeke1���
(
�⊤
��

)
+ a2

e
ke2���

(
�⊤
��

)
+ a2

e
ke3���

(
�⊤
��

)
.

(3.2)ke1 =
E

le
, ke2 =

3E

4�le
, ke3 =

E

4�le

(3.3)��� = �⊤

e
× �����⊤

e
× b̂ei.
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minimize WN =
∑
e∈�e

�aele (�����00)

subject to
�

∑
e∈�e

aeke1���(�
⊤

��
) + a2

e
ke2���(�

⊤

��
) + a2

e
ke3���(�

⊤

��
)

�

i

�= pi

∀i ∈ �dof (�����01)

−ykumax ≤ uj≤ ykumax ∀k ∈ �n ∀j ∈ D(k) (�����02)

aminxe ≤ ae≤ amaxxe ∀e ∈ �e (�����03)

xe1 + xe2≤ 1 ∀(e1, e2) ∈ S (�����04)

2yk≤
∑

e xe ∀k ∈ �n ∀e ∈ H(k) (�����05)

2xe≤ yn1 + yn2 ∀e ∈ �e (n1, n2) ∈ N(e) (�����06)

xe∈ {0, 1} ∀e ∈ �e (�����07)

yk∈ {0, 1} ∀k ∈ �n (�����08)

ae≥ 0 ∀e ∈ �e (�����09)

uj∈ ℝ ∀j ∈ �dof (�����10)

The variables can be split into two categories. Decision 
variables are the independent quantities related to element 
placement and their cross-sectional areas, while state varia-
bles are the dependent values determining the response to the 
external load given the specified structure, i.e., the internal 
forces, displacements, etc. Note that fixing the decision vari-
ables, fully determines the state variables (albeit, through 
nonlinear equations). The objective function (MINLP00), 
denoted as WN , gives the total weight of the structure where 
� is the material density. Constraint (MINLP01) enforces 
the equilibrium equations by employing the stiffness matrix 
decomposition discussed above. Note that by decomposing 
the stiffness matrix it is possible to separate the variable por-
tion from the fixed portion in the matrix. To limit the defor-
mation of the structure under the external load, we bound 
the displacement on each degree of freedom to be in a pre-
defined range in constraint (MINLP02). In this constraint, 
without loss of generality we assume that umin = −umax . To 
account for the fact that displacement on any nodes can be 
non-zero if and only if the node is connected to the resulting 
structure by at least one element we define a binary variable 
yk for each node k in the ground structure to indicate the 
connectivity of node k to the body of the resulting structure.

The rest of the constraints explicitly account for some of 
the AM-related limitations. First, in addition to the upper 
bound on the cross-sectional area ( amax ), a lower bound 
must be enforced, due to the laser and powder interactions. 
Note though that the lower bound is only applicable to the 
beams that are present in the structure. Consequently, we 

define a binary variable, xe , referring to whether beam e is 
included. Constraint (MINLP03) enforces the cross-sectional 
area bounds. Note that this constraint also eliminates the 
possibility of an element present in the structure with zero 
cross-sectional area.

Unlike truss structures, in planar frame structures, where 
the connections are fixed or welded (rigid joints), it is not 
desired (or even feasible) to have intersecting elements. 
If two elements intersect, they can no longer be correctly 
described in the balancing equations as two elements, and 
instead, should be replaced with four beams and an addi-
tional node (at the intersection point), which results in a 
different set of displacements. Hence a structure that allows 
for intersecting elements cannot be optimized with a fixed 
ground structure, and either needs to exclude such elements, 
or allow for creation of new nodes and elements. Methods 
following the latter approach are possible, see for example 
Cui et al. (2018) for the case of truss structures. However, 
this approach can lead to very long solution times, as the 
process is iterative and node addition can go on (in theory) 
indefinitely. Consequently, such a method may not be able 
to guarantee global optimality, even in theory. Due to the 
inherent difficulty of solving frame structures, we choose a 
different approach, by explicitly excluding intersecting ele-
ments. To this end, constraint (MINLP04) eliminates those 
intersections, by listing all pairs of beams that cannot be 
simultaneously included in the structure.

Finally, constraint (MINLP05) makes sure that the prob-
lem does not contain any “hanging elements”, which here 
are defined as nodes with only single beam attached (with 
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the exception of fixed boundary nodes and external load 
locations). Note that, “hanging elements”, cannot be pre-
sent in a globally optimal solution by definition (as these add 
weight and do not contribute to supporting the load), and 
hence, this constraint is not necessary. On the other hand, we 
have observed that it improves the solution time, by exclud-
ing certain subregions of the feasible set that are known to 
not contain the optimal solution.

Another manufacturability restriction can be accounted 
for directly in the definition of the ground structure itself. 
Specifically, AM process requires that unless the structure 
is able to support itself (i.e., the angle between any beam 
and the ground is more than a certain threshold), additional 
support structures should be employed to avoid warping, 
see for example, Liu and Yu (2020). These can be undesir-
able, since, if used, they increase the material (metal pow-
der) consumption and require specialized post-processing, 
which may not be feasible for all geometries/designs (Wang 
et al. 2019). To avoid this we can exclude all low-angle ele-
ments from the ground structure. It must be emphasized that, 
as defined, this approach is general, in the sense that any 
specific criterion for including/excluding elements in the 
ground structure can be accommodated. Further, since this 
is done before model formulation step (and before solution 
step), the three modeling approaches discussed in the this 
section are compatible with any ground structure and do 
not depend on the specific choice of the manufacturability 
angle criterion. For illustration purposes, in all examples 
and numerical experiments below we assume the low-angle 
threshold of 45◦ without loss of generality following Wang 
et al. (2013), while allowing for strictly horizontal beams 
(Liu and Yu 2020). Naturally, the models can be constructed 
for any other value of the angle analogously.

Overall, the problem given is then a mixed-integer non-
convex nonlinear programming problem (here, the non-con-
vex property refers to the non-convex continuous relaxa-
tion rather than the non-convexity due to integer variables), 
which cannot be linearized without loss of generality. One 
possible approach, discussed in the following section, is to 
restrict the continuous cross-sectional areas to only a dis-
crete set of values, in which case linearization is possible.

3.3 � Mixed integer linear programming model 
(MILP)

As noted earlier, in a traditional setting, the primary reason 
for discretizing potential cross-sectional areas (or diameters) 
of the structural elements in topology optimization was the 
fact that these elements were usually manufactured and 
available in pre-defined standard cross-sectional sizes and 
shapes. AM naturally relaxes this requirement, allowing for 
continuous decision variables.

Though, if discretization is applied, then it is possible 
to linearize the formulation above. Naturally, the resulting 
problem is not equivalent to the MINLP formulation, as it 
restricts the potential solutions. Note also that the lineariza-
tion described below relies on introducing additional binary 
variables, and hence, it is not clear whether the computa-
tional benefit of relaxing nonlinear constraints outweighs 
the burden due to the extra variables.

The model in this section is similar to the linear model 
proposed by Kureta and Kanno (2014). We modify it in 
order to be able to compare the results to the nonlinear 
models. We define the discrete cross-sectional area can-
didate set as C = {0, c1, c2, ..., cpr} . In general, this set can 
be element-specific without changing the structure of the 
model. Value pr gives the number of different non-zero dis-
crete cross-sectional area profiles that we defined in the set 
C ( |C| = pr + 1 ). For each element e ∈ �e and each c ∈ C , 
we also define a profile which includes the cross-sectional 
area of the element ( aec ), moment of inertia Iec (calculated 
using A.2) and length of the element ( le ). We can then define 
binary variable:

For this formulation aec is a parameter defined as cross-
sectional area of the selected profile c for element e. Con-
sequently, we can linearize all constraints with the usual 
“big-M” method.

(3.5)xec =

{
1 if profile c is chosen for element e

0 otherwise.
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minimize WL =
∑
e∈�e

�le
∑
c∈C

aecxec (����00)

subject to

∑
e∈�e

pr+1∑
c=0

aecke1vec1���(i) + a2
ec
ke2vec2���(i) + a2

ec
ke3vec3���(i)= pi

∀i ∈ �dof (����01)

−M

�
1 −

pr+1∑
c=1

xec

�
≤

pr+1∑
c=1

vecj − �⊤
��
�≤ M

�
1 −

pr+1∑
c=1

xec

�
∀e ∈ �e j ∈ {1, 2, 3} (����02)

−M

�
pr+1∑
c=1

xec

�
≤

pr+1∑
c=1

vecj≤ M

�
pr+1∑
c=1

xec

�
∀e ∈ �e (����03)

∑
c∈C

xec= 1 ∀e ∈ �e (����04)

pr+1∑
c=1

xec≤
1

2

�
yn1 + yn2

� ∀e ∈ �e(n1, n2) ∈ N(e) (����05)

−ykumax ≤ uj≤ ykumax ∀k ∈ �n ∀j ∈ D(k) (����06)

xe1 + xe2≤ 1 ∀(e1, e2) ∈ S (����07)

2yk≤
∑

e

∑pr+1

c=1
xec

∀k ∈ �n ∀e ∈ H(k) (����08)

xec∈ {0, 1} ∀e ∈ �e ∀c ∈ C (����09)

yk∈ {0, 1} ∀k ∈ �n (����10)

vecj∈ ℝ ∀e, c, j (����11)

Here we define a new variable vecj as the elongation of 
element e with profile c in direction j, where j ∈ {1, 2, 3} 
representing horizontal (x), vertical (y), and rotational direc-
tions respectively. The presented formulation modifies con-
straint (MILP01) and adds constraints (MILP02), (MILP03) 
and (MILP04).

Constraint (MILP01) reformulates the equilibrium equa-
tion in the linear form. Constraint (MILP02) ensures that 
vecj = �⊤

��
� if element e is present in the structure. Constraint 

(MILP03) restricts the elongation of each element that is not 
set to 0. Finally, constraint (MILP04) forces exactly one pro-
file from set C to be selected for element e. The rest of the 
constraints are directly analogous to the MINLP model.

3.4 � Mixed integer quadratically constrained 
programming model (MIQCP)

Finally, we consider a modification of the MINLP model, 
that allows us to reformulate it as a mixed-integer (non-
convex) quadratically constrained optimization problem. 

To the best of our knowledge this formulation, and this kind 
of model, has not been considered in the literature before 
for this problem.

Recall that a semi-continuous variable is a special kind 
of variable in a mathematical program, that is restricted 
to either zero or a continuous value from a pre-specified 
interval (which does not include zero). In our case, it natu-
rally lends itself to representing cross-sectional areas, since 
those are restricted to be either zero or between amin and amax 
pre-defined cross-sectional area bounds. While in general a 
semi-continuous variable can be replaced with a pair of a 
binary and a continuous variable and a “big-M” constraint, 
some modern optimization solvers allow for direct mode-
ling with such variables. This fact, in addition to the recent 
progress in non-convex quadratically constrained optimiza-
tion, motivates the MIQCP formulation below. Note that 
using semi-continuous variables for cross-sectional areas 
eliminates the need for binary variables xe used in MINLP 
formulation.
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minimize WQ =
∑
e∈�e

�aele (�����00)

subject to
�

∑
e∈�e

aeke1���(�
⊤

��
) + zeke2���(�

⊤

��
) + zeke3���(�

⊤

��
)

�

i

�= pi

∀i ∈ �dof (�����01)

ze= a2
e

∀e ∈ �e (�����02)

−M

�
∑
e

ae

�
≤ uj≤ M

�
∑
e

ae

�
∀j ∈ {j ∈ �dof|j ∈ D(k),∀e ∈ H(k)} (�����03)

−umax ≤ uj≤ umax ∀j ∈ �dof �����04

ae1ae2= 0 ∀(e1, e2) ∈ S (�����05)

ae≤ yn1yn2amax ∀(n1, n2) ∈ N(e) (�����06)

2ykamin≤
∑

e ae ∀k ∈ �n ∀e ∈ H(k) (�����07)

ae∈ {0} ∪ [amin, amax] ∀e ∈ �e (�����08)

ze∈ {0} ∪ [a2
min

, a2
max

] ∀e ∈ �e (�����09)

uj∈ ℝ ∀j ∈ �dof (�����10)

Fig. 2   Ground structures used 
in the experiments. Blue nodes 
represent the fixed nodes, while 
vertical upward and downward 
loads are applied at the green 
and red nodes respectively
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To preserve the quadratic structure of the constraints, we 
also introduce an auxiliary variable ze , which is set to the 
square of ae by constraint (MIQCP02). With these, it is now 
possible to reformulate the problem as a MIQCP. Compared 
to the MINLP formulation, some of the constraints have to 
be updated to eliminate variables xe . Specifically, constraint 
(MIQCP03) enforces the limits on the displacements with a 
“big-M” technique, constraint (MIQCP05) removes inter-
secting beams, constraint (MIQCP06) ensures that both ends 
of an existing beam are included in the structure, and con-
straint (MIQCP07) eliminates hanging beams.

3.5 � Solution approach

Most optimization algorithms benefit from either a warm-
start or a quality initial solution, and consequently we also 
propose a simple numerical procedure aimed at providing 
those for the model in question. Specifically, we consider a 
two-stage framework, where in the first stage we solve the 
simplest possible version of the model: linear formulation 
with just one non-zero profile, which can be expected to be 
relatively computationally inexpensive; then feed the result-
ing feasible solution (a valid upper bound) to the three con-
sidered formulations. Specifically, in stage one, we define 
C = {0, cmax} and solve problem (MILP00)–(MILP11). It 
is guaranteed that: 1) if this problem is infeasible, then the 
underlying design problem is infeasible; 2) the obtained 
optimal solution is feasible to both MINLP and MIQCP and 
any version of MILP with {0, cmax} ⊂ C . This implies that 
the resulting optimal solution can be provided as the incum-
bent to any of the three formulations. In terms of MIQCPs 
the advantage of the two-stage approach is two-fold. First, in 
some cases it speeds up the solution process. Second, with-
out two-stage approach, MIQCP method is unable to find 
any feasible solution to most challenging problems, which, 
naturally, can be a significant drawback. Also note that since 
MIQCP formulation does not directly include variables xij , 
it needs to be amended accordingly.

4 � Numerical experiments

4.1 � Test instances

A problem instance is defined by: the ground structure (num-
ber and position of nodes), external loads/boundary condi-
tions (locations and magnitude), material properties and the 
set C of cross-sectional area candidates (MILP model only). 
Next, we briefly describe each component separately.

Ground structures. Observe that, as defined, the prob-
lem allows for ground structures of any shape or form. At 
the same time, in this case study, for the sake of stream-
lining the discussion, we only consider regular structures 
defined as 3 × 3 (with 9 nodes and 24 elements), 4 × 4 (with 
16 nodes and 60 elements), and 5 × 5 (with 25 nodes and 
120 elements) grids. We assume 50 mm × 50 mm design 
domain (with proportionally adjusted inter-nodal distance). 
The ground structures (along with external loads discussed 
below) are depicted on Fig. 2.

As discussed in Sect. 3.2, all potential beams at angle less 
than 45◦ to the ground are excluded due to manufacturability 
restrictions with the exception of horizontal elements. It is 
worth emphasizing here that our methodology, as proposed, 
is general and allows for flexibility in customizing the spe-
cific definition of manufacturability that a designer prefers. 
While beam angle to the ground is a primary determinant of 
the ability to manufacture a beam without support, the exact 
value of feasible angles can depend on a number of factors, 
including, for example, material used or surface roughness 
tolerance. For a detailed discussion of the related factors, 
see for example, Liu and Yu (2020). For the purposes of 
demonstrating the capabilities of our methodology, in the 
case study and all examples used we assume that beams 
at angle less than 45◦ to the ground are not allowed. At the 
same time, in this study we do allow for horizontal beams, 
which, as discussed in Liu and Yu (2020), represent a spe-
cial case. Other criteria for including or excluding beams 
to/from ground structure can be straightforwardly applied 
in a particular application by updating the ground structure 

Fig. 3   Optimal structures found 
by five models for the instance 
based on ground structure (d) 
with 50 kN  load. Beam widths 
are scaled for better viewing
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(in advance of the optimization model formulation) with-
out significant computational burden. Note that since the 
goal of our numerical experiments is to determine the scale 
of frame optimization problems that can be solved to opti-
mality (and since the main conclusion is that most practical 

frame optimization problems remain too computationally 
challenging for exact global optimization models), we do 
not expect that the particular choice of the angle criterion 
will have a significant effect on the outcome, as long as it 
is not too restrictive, so as to still allow for some flexibility 

Table 1   Weight of the best 
structures found by the 6 
models

Bold value indicates the best possible results among all models
Asterisks (*) indicate the best found (feasible) solutions when optimality could not be proven

Structures from Fig. 2

Load Model (a) (b) (c) (d) (e) (f) (g) (h) (i)

25 CS1 14.05 70.18 77.18 12.70 106.15* 79.21* 14.05 50.03* 81.88*
CS2 14.05 38.10 59.63 12.70 84.10* 69.05* 14.05* 43.34* 70.51*
CS3 13.80 38.10 56.09* 12.70 82.54* 68.27* 13.80* 38.64* 75.32*
QDW 13.58 37.71 54.32* 12.70 95.57* 69.76* 13.59* 60.51* 78.34*
QD 13.58 37.71 54.87* 12.70 – – 13.60* – –
NL 13.58 37.93* 54.45* 12.70 - – 56.97* – –

50 CS1 26.08 86.67 150.34 29.07 202.62* 130.34* 26.07* 86.67* 133.55*
CS2 22.83 79.60 110.36 24.84 202.62* 112.14* 22.83 79.60* 110.35*
CS3 21.95 77.09* 110.36* 22.84 202.62* 110.36* 19.97 77.54* 110.63*
QDW 18.86 75.51* 117.28* 21.46 202.62* 132.2* 18.88* 86.67* 134.28*
QD 18.86 75.51* - 21.46 – – 75.17* – –
NL 18.86 79.14* – 36.61* – – – – –

75 CS1 65.89 130.58 189.61 44.74 – 174.19* 39.15* 148.53* 166.48*
CS2 31.61 130.58 168.41 35.50 – 158.94* 31.61* 144.99* 150.67
CS3 31.61 126.85* 164.68* 34.01* - 157.24* 29.19* 143.25* 150.99*
QDW 28.3 130.57* 168.75* 32.18 - 170.74* 53.81* 130.57* 187.86*
QD 28.3 – – 32.18 – – – – –
NL 28.3 – – – – – – – –

Table 2   Solution time (in 
seconds) for all structures 
solved by the 6 models

Structures from Fig. 2

Load Model (a) (b) (c) (d) (e) (f) (g) (h) (i)

25 CS1 0.76 57.17 10.98 2.52 �� �� 23.38 �� ��

CS2 1.15 65.69 444.59 4.04 �� �� 28.13 �� ��

CS3 0.87 630.00 �� 4.88 �� �� 62.98 �� ��

QDW 0.82 61.10 �� 18.38 �� �� �� �� ��

QD 0.76 64.65 �� 9.49 – – �� – –
NL 20.53 �� �� 222.10 – – �� – –

50 CS1 1.00 24.70 41.99 78.45 �� �� �� �� ��

CS2 0.91 1568.60 6043.40 100.40 �� �� 15240.24 �� ��

CS3 1.54 �� �� 120.92 �� �� 1488.05 �� ��

QDW 1.28 �� �� 404.86 �� �� �� �� ��

QD 2.17 �� – 368.82 – – �� – –
NL 97.73 �� – �� – – – – –

75 CS1 2.34 31.97 17.19 696.28 – �� �� �� ��

CS2 1.83 3184.62 8429.44 4372.74 – �� �� �� ��

CS3 6.55 �� �� �� – �� �� �� ��

QDW 1.45 �� �� 6620.9 – �� �� �� ��

QD 1.95 – – 15302 – – – – –
NL 531.47 - – – – – – – –
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in the design space. Consequently, we do not explicitly test 
whether the relative performance of the models is sensi-
tive to the specific choice of the manufacturability angle (or 
inclusion/exclusion of horizontal elements).

Boundary conditions and external loads. We consider 
three pairs of boundary conditions/external loads, which 
in combination with the three ground structures result in 
the nine cases given on Fig. 2, where blue nodes represent 
the fixed locations (displacements set to 0), while vertical 
upward and downward loads are applied at the green and red 
nodes respectively. Unlike some existing approaches in the 
literature where the loads are normalized to unit, for each 
of the nine cases, we apply three load magnitudes: 25, 50, 
and 75 kN  , to be able to assess the scale (and difficulty) of 
problems that can be solved with each solver. The values of 
the loads (and displacement limits) are selected so that the 
lowest values result in fairly simple structures with just a 
handful of beams, while the heaviest loads are close to the 
maximum feasible load for the structures given the limit on 
displacement and material properties. This results in a total 
of 27 test instances, which span from “very easy to solve ” 
to “not being able to solve within time limit” for all models.

It is also worth noting that due to symmetry and since we 
keep the size of the design space constant, 3 × 3 structures 
are restrictions of the corresponding 5 × 5 cases, and so we 
expect that the latter should result in lighter weight solutions 
(at optimality).

Material properties. We set E = 109 GPa (Young’s 
modulus of elasticity for steel) which is assumed to be 
fixed for all members. Displacements are limited to 

[−0.095mm,+0.095mm] in horizontal and vertical direc-
tions. We also assume that beam elements in the structure 
have circular cross-sections with constant radius along the 
members. Without loss of generality, we set material density 
( � ) to 1.

Candidate sets. All 27 instances were solved with the 
three exact formulations (MINLP, MIQCP with warm-start, 
and MIQCP without warm-start) and three versions of the 
MILP model with the following cross-sectional area candi-
date sets (in mm2):

–	 Set1 = {0,�(0.2)2,�(0.5)2} ;
–	 Set2 = {0,�(0.2)2,�(0.3)2,�(0.4)2,�(0.5)2};
–	 Set

3
= {0,�(0.2)2,�(0.25)2,�(0.30)2,�(0.35)2,

�(0.40)2,�(0.45)2,�(0.5)2} .

Naturally, all three include 0 as an option to allow for 
excluding some of the beams, and Set1 ⊂ Set2 ⊂ Set3 . Con-
sequently, we expect that each optimal solution to the sub-
sequent MILP version closer approximates the continuous 
case. On the other hand, each results in more binary vari-
ables, and thus, is more computationally expensive. Through 
the rest of this section we will refer to the models as:

–	 NL: Mixed integer non-linear model with continuous and 
binary variables (Sec. 3.2);

–	 CS1: Linear model solved with Set1 (Sec. 3.3);
–	 CS2: Linear model solved with Set2 (Sec. 3.3);
–	 CS3: Linear model solved with Set3 (Sec. 3.3);

Table 3   Optimality gap (%) for 
all structures solved by the 6 
models

Structures from Fig. 2

Load Model (a) (b) (c) (d) (e) (f) (g) (h) (i)

25 CS1 0 0 0 0 57.3 62.90 0 62.06 76.36
CS2 0 0 0 0 64.06 62.71 0 58.34 74.06
CS3 0 0 19.16 0 70.02 65.88 0 55.90 79.42
QDW 0 0 13.45 0 71.68 65.55 2.81 73.83 82.52
QD 0 0 14.32 0 – – 3.37 – –
NL 0 0.01 – 0 – – – – –

50 CS1 0 0 0 0 67.65 72.41 10.02 75.34 85.73
CS2 0 0 0 0 84.28 76.59 0 76.85 82.66
CS3 0 28.49 53.52 0 86.93 78.56 0 76.76 84.38
QDW 0 15.11 44.33 0 83.46 78.88 17.17 78.62 87.10
QD 0 14.64 – 0 – – 44.87 – –
NL 0 – – – - – – - –

75 CS1 0 0 0 0 – 66.78 42.47 83.18 87.48
CS2 0 0 0 0 – 80.59 39.90 85.65 86.48
CS3 0 46.76 60.77 19.55 – 83.52 33.53 86.72 86.88
QDW 0 37.15 48.96 0 – 80.30 66.92 83.66 89.33
QD 0 – – 0 – – – – –
NL 0 – – – – – – – –
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–	 QDW: Mixed integer quadratically constrained model with 
semi-continuous variables and warm-start(Sec. 3.4).

–	 QD: Mixed integer quadratically constrained model with 
semi-continuous variables (Sec. 3.4).

In addition, note that we attempt to solve each instance and 
each formulation with and without the two-stage initial solu-
tion approach described above.

Implementation details and solver selection. All model 
construction has been implemented in Pyomo (Hart et al. 
2011, 2017) and Gurobi’s interface for Python (Gurobipy) 
(Gurobi Optimization 2021). Once modelled, all instances 
were solved with off-the-shelf commercial solvers, selected 
as described below. All experiments unless specifically men-
tioned were performed on a desktop computer with IntelⓇ 
Core™  i7-10700K CPU @ 3.80 GHz, 64.0 GB installed 
memory, running on a 64-bit Windows 10 Enterprise OS 
with solver time limit set to 5 hours (18,000 seconds).
MINLP model is a general mixed-integer programming 

problem with non-convex continuous relaxation. While there 
exist a few available exact solvers, these can be unreliable 
and their relative performance is often instance-dependent. 
For our experiments we selected BARON (Sahinidis 2017), 
which is often considered as one of the best available general 
purpose global optimization solvers (Neumaier et al. 2005; 
Kronqvist et al. 2019).
MILP formulation results in a standard mixed-integer lin-

ear problem. While it is still NP-hard and computationally 
challenging, there exist reliable and efficient available solv-
ers. We chose to use Gurobi for the following reasons. First, 
we conducted preliminary experiments with other solvers 
(specifically, CPLEX and Xpress) but we did not observe 
consistent pattern in relative performance of the linear solv-
ers for our instances. Secondly, Gurobi is the only one that 
also allows for non-convex MIQP problems, and thus a 
direct implementation of the MIQCP model.
MIQCP formulation improves on the MINLP by only 

using quadratic constraints, which introduces additional 
structure to the problem. Note that due to this structure, we 
would expect this formulation to outperform the MINLP ver-
sion even when used with a general global solver. Gurobi 
version 9.0 or newer is able to naitively solve problems 
with (non-convex) quadratic constraints by transforming 
them into bilinear constraints. These are then handled by a 
spacial branch-and-bound algorithm, which uses a special-
ized cutting plane approach. More details on the specific 
implementation are available in the software documenta-
tion (Gurobi  Optimization 2021). In general in spatial 
branch and bound methods (sBB), designed for MINLPs, 
branching happens not only on the integer, as is the case in 
usual branch-and-bound algorithm, but also on the continu-
ous variables, which allows for efficient exploration of the 
whole feasible set, while generating tighter relaxations. For 

more details of sBB method, we refer the reader to Smith 
and Pantelides (1999). Detailed description of other imple-
mentation techniques used in solving non-convex MIQCPs, 
such as valid inequalities, or relaxation tightening is beyond 
the scope of this paper and can be found in, for example, 
Castro (2015). Note that, in addition to direct support for 
non-convex quadratic constraints, Gurobi also allows for 
explicit use of semi-continuous variables, which simplifies 
implementation of the proposed model, and consequently, 
we use Gurobi for these instances.

4.2 � Numerical results

In the remainder of this section, we make observations by 
systematically comparing all the models across all instances. 
In general, the resulting structures can be compared in terms 
of three metrics: total weight, solution time and optimality 
gap. In Tables 1, 2, and 3 we respectively report total weight 
of the resulting structures, solution times (in seconds), and 
the optimality gaps (in percent) when the time limit was 
reached by the solver. In these tables, we also note instances 
for which the models could not identify any feasible solu-
tion (i.e., infinite gap) labelled with a dash “-”, separately 
from the instances where a feasible, but not provably opti-
mal solution was found labelled with asterisk (*) in Table 1 
and TL in Table 2. Naturally, these instances correspond to 
non-zero optimality gap in Table 3. In each Table, we report 
on the performance of six models, as discussed in detail in 
Sect. 4.1.

Figure 3 at the end of this section depicts the structures 
obtained from the linear, two-stage quadratic and nonlinear 
models solving the instances for ground structure given on 
Fig. 2d with 50 kN  load. We will use it as an example illus-
trating our conclusions. Depictions of all solutions for each 
of the 27 instances and 6 models are not given in here for 
the sake of brevity, but can be found in the Github repository 
mentioned in the ‘Declarations’ section.

Observe that in theory, formulations MINLP and MIQCP 
are equivalent and hence at optimally should produce struc-
tures of the same total weight, while potentially requiring 
different computational effort. On the other hand, MILP is 
a restricted formulation, and so at optimally it should pro-
duce a structure heavier than the optimal MIQCP structure. 
Further, the more options for cross-sectional areas that are 
considered, the closer the MILP should approximate the 
MIQCP optimal solution. Note though that since a time limit 
of 5 hours was applied to all instances, these relationships 
may not hold for all cases in the experiments. Consequently, 
we choose to report the weight of the resulting structures, 
even when suboptimal, since, together with the correspond-
ing gap, it enables us to make some conclusions on the per-
formance of the three models. Observe that, overall, across 
all models and structures increasing external load leads to 
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both heavier structures and higher computational time (and 
optimality gap). Both observations are expected, as higher 
load naturally requires a sturdier structure, which in turn, can 
be expected to be more challenging to find.

First, let us compare the two versions of MIQCP model: 
with (QDW) and without (QD) warm start. Most impor-
tantly, observe that, while with the two-stage approach we 
are able to at least identify a feasible structure, the one-stage 
method cannot find any solution within the time limit in 
majority of cases, which can be a significant drawback in 
practical setting. The two stage approach also resulted in 
smaller optimality gap in all but one of the cases, and com-
parable solution time (which includes time for both stages) 
for instances that were able to be solved to optimality. Con-
sequently, we conclude that the single-stage method is not 
competitive against QDW.

Next, compare the quadratic and nonlinear formulations. 
As discussed in Sect. 4.1, by introducing special problem 
structure, we can expect that MIQCP model should strictly 
outperform MINLP model even if solved by the same solver. 
This discrepancy should only increase, when implemented 
with the specialized quadratic programming rather than a 
general purpose global solver. We verify this conclusion 
with the experiments. As observed in the Tables, MIQCP 
outperforms MINLP model, in most cases significantly. Con-
sequently, we conclude that the former is preferred to the 
latter in all cases.

Finally, compare the linear models and the quadratic 
approach. Consider the instances that were solved within the 
time limit. As we have noted earlier, the expected outcome in 
this case is to observe “weight of CS1” ≥ “weight of CS2” 
≥ “weight of CS3” ≥ “weight of QDW” = “weight of NL” 
based on the formulation properties. This is indeed evident 
in Table 1 for almost all of the cases in the left half of table 
where the instances can be solved optimally.

It is worth emphasizing that it is impossible to evaluate in 
advance how far the obtained structure for the linear models 
(CS1–CS3) will be from the exact globally optimal solution. 
In our experiments, while in some cases CS1 optimal solu-
tion is close to QDW (e.g., (d) with load 25 kN  ), in others 
the quality of the CS1 solution (in terms of weight), can be 
extremely poor (e.g., instances (b) load 25 kN  and instance 
(a) load 75 kN  among others). We can then conclude that 
if an optimal solution can be expected to be obtained within 
the constraints of the available computational resources, 
QDW model can be viewed as generally outperforming the 
linear models, as it is expected to return lighter structures 
with computational effort comparable to the linear formula-
tions with more alternatives. Consequently, we can conclude 
that the only reason to consider the linear version is if com-
putational resources are severely restricted, in which case it 
is not advisable to consider more than 4 options (including 

0) for the beam cross-sectional areas, as those are outper-
formed by QDW model.

Unfortunately, our experiments also demonstrate that 
obtaining an optimal solution found within the time limit is 
only possible for relatively small instances. QDW formulation 
was able to find the exact solution for none of the 5-by-5 
instances and only the easiest of 4-by-4 ones. Note though 
that even comparing optimal (or lower gap) CS1–CS3 struc-
tures against suboptimal QDW solutions, we cannot conclu-
sively declare that either approach consistently produces 
lighter structures. Indeed, each of the models (CS1–CS3, 
QDW) produced the best structure within the time limit for 
at least one ground structure and load combination. Con-
sequently, even when QDW model does not find the global 
optimum within the time limit, it is still competitive with the 
linear formulations, though all finish with relatively large 
optimality gaps (up to 89%) in some cases.

5 � Conclusions

In this paper, we modeled and solved the topology optimi-
zation problem of designing minimum-weight planar frame 
structures for additive manufacturing using three different 
mathematical modeling approaches. While recent advances 
in exact optimization software and available computing 
resources suggest a potential wider applicability of exact 
methods in solving these challenging problems, unfor-
tunately, our experiments demonstrate that it is still only 
possible for relatively small instances. Consequently, we 
characterize the extent to which exact global optimization 
is possible in AM setting.

The first contribution of this work is in incorporating AM 
manufacturability constraints into the existing models for 
the frame structure optimization problem. Second, we build 
on two existing approaches in the literature to propose a 
new model that is designed to take advantage of progress 
in global optimization software. The traditional modeling 
approach includes nonlinearity in the equilibrium equations, 
resulting in a Mixed-Integer Nonlinear Programming formu-
lation with non-convex continuous relaxation. A linearized 
formulation can be obtained by assuming a discrete set of 
beam diameters and using a decomposition of the stiffness 
matrix. As a way to address the computational challenges 
inherent to both existing formulations we propose a Mixed-
Integer Quadratically-Constrained Programming formula-
tion of the problem by employing semi-continuous variables.

We compare the results of these models in terms of struc-
tures’ weight and the solving time. All three formulations 
can be solved with off-the-shelf commercial solvers. Note 
though that each poses significant computational challenges. 
Specifically, MINLP formulation is explicitly non-convex, 
and while there exist general-purpose global optimization 
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tools (e.g., BARON, used in our experiments), they are still 
rather limited in their ability to solve practical problems in 
the absence of some particular problem structure. MIQCP 
formulation partially alleviates this issue by relying on quad-
ratic constraints only, and hence is able to take advantage 
of more specialized software. At the same time, the formu-
lation is still non-convex and so is still hard to solve. The 
three models were implemented to solve frame optimization 
instances with various test ground structures.

First, our results show that the proposed quadratic model 
easily out-performs the MINLP model in all cases. We also 
note that the quadratic model together with the proposed two-
stage approach to solve the experimental instances can find at 
least a feasible solution for 26 out of 27 structure/load com-
binations. The two-stage approach helps solving the problem 
in two directions: (1) infeasibility of the first stage proves the 
infeasibility of the instance; (2) at least a feasible solution 
can be found for all of the instances for which the first stage 
resulted in a solution. Consequently, we conclude that as far as 
exact mathematical programming formulations are concerned, 
MIQCP version with two-stage solution approach is superior.

The linear formulation can rely on efficient modern MILP 
solvers (CPLEX, Gurobi, etc), which are generally more reli-
able and efficient than the non-linear counterparts. At the 
same time, by design, it is a restricted formulation, meaning 
that it cannot be guaranteed to find the exact optimal solution 
or in general provide a tight bound on how far the identified 
approximate solution is from the global optimum. Second, 
to eliminate non-convexity it introduces a large number of 
binary variables, especially if more than a handful of profile 
options are considered. Consequently, the linear model may 
still be hard to solve and may result in inferior optimal solu-
tions. Our experiments indicate that, in general, linear for-
mulation can only be recommended if few (up to 3-4) options 
for dimensions per beam are considered. In those cases, the 
formulation can be expected to find a solution faster than the 
exact MIQCP, assuming that exact global optimum is not 
important. On the other hand, MIQCP generally outperforms 
or is comparable with larger linear formulations.

It must be emphasized that despite the progress in both 
hardware and off-the-shelf optimization software, even the 
best models considered here for discrete topology optimi-
zation of frames are still restricted in terms of the scale of 
problems solved. On one hand, the MIQCP model performs 
best in the easiest instances and its performance is compa-
rable with a linear model (with a modest set of available 
cross-sectional areas) for the larger ones tested. On the other 
hand, all the instances included in this study are smaller 
than a typical practical problem. Hence, this study has also 
shown that pure mathematical programming approaches are 
not well suited for real-world applications of this problem.

It is also worth noting that while hardware improve-
ments (or extended time limits) might somewhat increase 

the scale of instances that can be solved to global optimality, 
our experience with these and similar problems suggests 
that only very modest increase can actually be expected. 
Indeed, observe that in our case study almost none of the 
5 × 5 instances can achieve optimality gap below 50%. In 
difficult (non-convex, mixed-integer) optimization problems, 
it is usually much easier to find a relatively good solution, 
than it is to actually close the optimality gap (or prove its 
optimality). Consequently, given the size of the observed 
gap, we do not expect that any of the considered methods 
would be able to find global optimum on the same hard-
ware within any reasonable time limit for any of the hardest 
5 × 5 instances. It may be an interesting research question 
to consider the extent to which a supercomputer might be 
able to speed up the procedure, but even then our experience 
suggests that exact global optima for any practical frame 
optimization problems remain unattainable.

Future work should consider heuristic or metaheuristic 
methods to quickly find good (albeit sub-optimal) solutions to 
realistically sized problems. Note that the MIQCP model pro-
posed here can still be relevant for such efforts. First, a continu-
ous relaxation (or restriction based on particular binary vari-
ables’ values) can serve as a subroutine in a heuristic approach. 
For example, if binary variables are fixed (i.e., if beams present 
in the structure are preselected), beam-sizing problem should 
still be solved by employing the quadratic version of the equi-
librium constraint as opposed to the general non-linear one. 
Further, our methodology can be useful for validating any pos-
sible heuristic methods, at least for smaller instances.

Appendix

Using the relations between displacement and external nodal 
loads from matrix analysis of the frame structures, we can 
define the stiffness matrix of each beam element in its local 
coordinate system as follow:

�e ∈ IR6×6 is a symmetric positive definite matrix in 
which, ae and Ie represents the two cross-sectional proper-
ties, namely area and moment of inertia, of the element e 
(Kassimali (2012)). In order to reduce the number of deci-
sion variables in our mathematical models, we can relate the 
moment of inertia for circular beams to their cross-sectional 
area as follows ( re is the radius of element e):

ke(ae, Ie) =









aeE
le

0 0 −aeE
le

0 0
0 12IeE

l3e

6IeE
l2e

0 −12IeE
l3e

6IeE
l2e

0 6IeE
l2e

4IeE
le

0 −6IeE
l2e

2IeE
le

−aeE
le

0 0 aeE
le

0 0
0 −12IeE

l3e
−6IeE

l2e
0 12IeE

l3e
−6IeE

l2e

0 6IeE
l2e

2IeE
le

0 −6IeE
l2e

4IeE
le

(A.1)
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Equilibrium state of the structure, where the internal forces 
and external nodal loads are balancing each other, can be 
illustrated in the model by using equilibrium equations:

Equation (A.3) represents d similar constraints in the math-
ematical model. In (A.3), � ∈ IRd×d is the global stiffness 
matrix of the structure. � and � are d × 1 vectors represent-
ing respectively, displacements and the external nodal loads 
on all degrees of freedom. Although we will explain it later 
in detail, it should be noted here that � is constructed using 
the members’ stiffness matrices in a global coordinate sys-
tem. Based on the boundary conditions, for some of the 
degrees of freedom j, uj = 0 and for some degrees of free-
dom j, pj is a variable representing reaction forces on the 
fixed nodes. Based on the mentioned boundary condition 
effects, we express each equation of (A.3) in the form of the 
constraints in mathematical models as follow:

We assume that external loads exist only on the end-
nodes of the elements not along them. Loads also assumed 
to be concentrated dead loads which means they are 
deterministic,given, and do not change during the analysis. 
�e in (A.1), and as a consequence, � in (A.3), include ae and 
Ie which are decision variables in the model. In finite ele-
ment analysis, to avoid matrix inversion in solving the sys-
tem of equations in (A.3), usually different decomposition 
methods such as LU decomposition, Cholesky decomposi-
tion, or Singular Value Decomposition are used. Here, fol-
lowing the approach that (Stolpe and Svanberg 2003; Stolpe 
2004; Rasmussen and Stolpe 2008; Kanno 2016) suggested, 
we decompose the stiffness matrices in (A.1). We define the 
following vectors together with the eigenvalues:

The member stiffness matrix in local coordinates can be 
obtained using the following matrix multiplication:

(A.2)Ie =
�r4

e

4
=

a2
e

4�

(A.3)�(�, �)� = �

(A.4)
d∑

j=1

�ijuj = pi ∀i ∈ �dof

b̂e1 =









−1
0
0
1
0
0

, b̂e2 =









0
2/le
1
0

−2/le
1

, b̂e3 =









0
0
−1
0
0
1

∀e ∈ Se (A.5)

(A.6)ke1 =
aeE

le
, ke2 =

3IeE

le
, ke3 =

IeE

le

where b̂ez(b̂⊤ez) represents the outer product of the two vectors 
b̂ez ∈ IR6×1 and b̂⊤

ez
∈ IR1×6 , which results in a matrix in IR6×6 . 

Using Eq. (A.2) we can replace Ie with a2
e
∕4� and rewrite the 

decomposition in (A.7) as:

To be used in the construction of the structure’s stiffness 
matrix, vectors in (A.5) need to be transformed to global 
coordinates. Considering the geometry of each beam ele-
ment, we define the following transformation matrices:

In which c = cos(�e) , s = sin(�e) . To assemble the global 
stiffness matrix of the structure, we define the element speci-
fied �e ∈ IR6×d matrices. Each �e is a 6 × d binary location 
matrix that relates the element’s degrees of freedom to the 
degrees of freedom in the structure. Consider element e 
which connects node 2 (degrees of freedom: {4, 5, 6} ) and 
node 4 (degrees of freedom: {10, 11, 12} ), the degrees of 
freedom of element e are: {4, 5, 6, 10, 11, 12} and the �e 
matrix for this element can be defined as: 

The following transformation of the b̂e matrices are used 
in the generating of equilibrium equations:

for which as mentioned before, �⊤
e
∈ IRd×6 , �����⊤

e
∈ IR6×6 , 

and b̂e ∈ IR6×1 , therefore �� ∈ IRd×1 . Using these equations 
and values in (3.2), equation (A.4) can be written as (notice 
that ��� ∧ �⊤

��
 and ��� ∧ �⊤

��
 and ��� ∧ �⊤

��
∈ IRd×d ):

In the above equation, the summation is the global stiffness 
matrix of the structure that was generated using the relations 
(A.5) through (A.9).

(A.7)�e =

3∑

z=1

kezb̂ez
(
b̂
⊤

ez

)

(A.8)�e =
aeE

le
b̂e1

(
b̂
⊤

e1

)
+

3a2
e
E

4�le
b̂e2

(
b̂
⊤

e2

)
+

a2
e
E

4�le
b̂e3

(
b̂
⊤

e3

)

Transe =









c s 0 0 0 0
−s c 0 0 0 0
0 0 1 0 0 0
0 0 0 c s 0
0 0 0 −s c 0
0 0 0 0 0 1 6×6

(A.9)�� = �⊤

e
× �����⊤

e
× b̂e

(A.10)

(
∑

e∈�e

ke1���(�
⊤

��
) + ke2���(�

⊤

��
) + ke3���(�

⊤

��
)

)

i

� = pi ∀i ∈ �dof
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